ATI TEAS 7
TEAS Test 7 science quizlet
1. Osteoporosis is a condition that leads to weakened bones and an increased risk of fractures. Which hormone plays a key role in bone health and is often affected in osteoporosis?
- A. Estrogen
- B. Testosterone
- C. Thyroid hormone
- D. Insulin
Correct answer: A
Rationale: Estrogen plays a crucial role in maintaining bone health by inhibiting bone resorption and promoting bone formation. In postmenopausal women, estrogen levels decrease, leading to an increased risk of osteoporosis due to accelerated bone loss. This hormonal imbalance contributes to weakened bones and an increased risk of fractures in individuals with osteoporosis. Testosterone and thyroid hormone do play roles in bone health, but estrogen has a more significant impact. Testosterone is more commonly associated with muscle mass and strength, while thyroid hormone regulates metabolism. Insulin is not directly involved in bone health and is not typically affected in osteoporosis.
2. A person pushes a box across a floor with a constant force. The box eventually comes to a stop due to friction. What happens to the work done by the person?
- A. It increases as the box moves further.
- B. It decreases as the box slows down.
- C. It remains constant throughout the motion.
- D. It becomes zero once the box stops.
Correct answer: D
Rationale: Work done is defined as the product of the force applied and the distance moved in the direction of the force. In this scenario, when the box comes to a stop, the displacement becomes zero, leading to zero work done by the person. Choice A is incorrect as the work done is not increasing, but rather decreasing as the box slows down. Choice B is incorrect because the work done does not decrease as the box slows down; it becomes zero when the box stops. Choice C is incorrect as the work done is not constant but decreases to zero when the box stops.
3. What checkpoint mechanism ensures all chromosomes are attached to the spindle fibers before anaphase begins?
- A. Prometaphase
- B. Metaphase
- C. Cyclin degradation
- D. Sister chromatid cohesion
Correct answer: A
Rationale: A) Prometaphase is the correct answer because it is the stage of mitosis where all chromosomes are attached to the spindle fibers before anaphase begins. During prometaphase, the nuclear envelope breaks down, allowing the spindle fibers to attach to the kinetochores of the chromosomes. This attachment is necessary for proper chromosome alignment and segregation during anaphase. B) Metaphase is incorrect because it is the stage where chromosomes are aligned at the metaphase plate but do not necessarily have all spindle fibers attached. C) Cyclin degradation is incorrect because it is a regulatory mechanism that controls the progression of the cell cycle but is not specifically related to ensuring all chromosomes are attached to spindle fibers. D) Sister chromatid cohesion is incorrect because it refers to the physical connection between sister chromatids that is maintained until anaphase, but it does not ensure that all chromosomes are attached to spindle fibers.
4. Which of Mendel's Laws states that alleles for a gene segregate during gamete formation?
- A. Law of Independent Assortment
- B. Law of Segregation
- C. Law of Dominance
- D. Law of Probability
Correct answer: B
Rationale: The Law of Segregation, proposed by Gregor Mendel, states that alleles for a gene segregate during gamete formation. This means that each parent passes on only one allele for each gene to their offspring. This law explains how genetic diversity is maintained and how different combinations of alleles are generated in offspring. The Law of Independent Assortment (option A) is not the correct answer as it states that alleles of different genes assort independently of each other during gamete formation, not specifically alleles of a single gene. The Law of Dominance (option C) is incorrect as it pertains to the expression of alleles rather than their segregation during gamete formation. The Law of Probability (option D) is also incorrect as it is a general concept describing the likelihood of events, not specifically related to alleles segregating during gamete formation.
5. Which statement accurately describes cytokinesis in animal cells?
- A. Which statement accurately describes cytokinesis in animal cells?
- B. A cell plate forms in the center of the dividing cell, eventually separating the cytoplasm into two daughter cells.
- C. A cell plate forms in the center of the dividing cell, eventually separating the cytoplasm into two daughter cells.
- D. The nucleus elongates and pulls apart, physically dividing the cytoplasm into two.
Correct answer: B
Rationale: A) This statement is a duplicate of option C and does not accurately describe cytokinesis in animal cells. B) In animal cells, during cytokinesis, a cleavage furrow forms in the center of the dividing cell. This furrow deepens and eventually pinches the cytoplasm into two daughter cells. This process is distinct from plant cells, where a cell plate forms. C) This statement is a duplicate of option A and does not accurately describe cytokinesis in animal cells. D) This statement describes the process of nuclear division (mitosis) rather than cytokinesis, which is the division of the cytoplasm.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access