ATI TEAS 7
ati teas 7 science
1. Nuclear fusion powers the sun and other stars. What is the main obstacle to achieving controlled nuclear fusion on Earth for energy production?
- A. Lack of suitable materials to handle high temperatures and pressures.
- B. Limited availability of fusion fuels like deuterium and tritium.
- C. Difficulty in containing the plasma where fusion occurs.
- D. All of the above
Correct answer: D
Rationale: The main obstacle to achieving controlled nuclear fusion on Earth for energy production involves a combination of factors. A) Lack of suitable materials to handle high temperatures and pressures is a significant challenge due to the extreme conditions required for fusion reactions. B) Limited availability of fusion fuels like deuterium and tritium can pose a constraint on the scalability and sustainability of fusion energy. C) Difficulty in containing the plasma where fusion occurs is another critical issue as plasma instabilities and heat losses can hinder the efficiency of fusion reactions. Therefore, all of the options (A, B, and C) contribute to the challenges in achieving controlled nuclear fusion for energy production on Earth.
2. In the K-capture process, a type of electron capture, from which electron shell does the electron get captured?
- A. The outermost s-orbital
- B. An inner p-orbital
- C. An inner d-orbital
- D. Any available electron shell
Correct answer: B
Rationale: The K-capture process involves the capture of an electron from the innermost electron shell, known as the K-shell. The K-shell comprises s and p orbitals. During the K-capture process, an electron is specifically captured from an inner p-orbital within the K-shell. Choices A, C, and D are incorrect because K-capture involves capturing an electron from the innermost shell (K-shell) which consists of s and p orbitals, not the outermost s-orbital, inner d-orbital, or any available electron shell.
3. What is the difference between a germline mutation and a somatic mutation?
- A. Germline mutations are passed to offspring, while somatic mutations are not.
- B. Germline mutations occur in reproductive cells, while somatic mutations occur in body cells.
- C. Germline mutations only affect genes, while somatic mutations can affect any DNA.
- D. Germline mutations are always beneficial, while somatic mutations are always harmful.
Correct answer: B
Rationale: Rationale: - Germline mutations are changes in the DNA of reproductive cells (sperm or egg cells) and can be passed on to offspring, affecting all cells in the resulting organism. - Somatic mutations are changes in the DNA of non-reproductive cells (body cells) and are not passed on to offspring. These mutations only affect the cells that arise from the mutated cell. - Option A is incorrect because somatic mutations are not passed to offspring. - Option C is incorrect because both germline and somatic mutations can affect any DNA. - Option D is incorrect because the effects of mutations, whether germline or somatic, can be beneficial, harmful, or have no significant impact.
4. When a person pushes a box across the floor, which of the following forces is NOT doing work?
- A. The person's pushing force
- B. The normal force from the floor
- C. The gravitational force on the box
- D. The frictional force between the box and the floor
Correct answer: B
Rationale: The normal force from the floor is perpendicular to the direction of motion of the box, so it does not contribute to the work being done. Work is only done by forces acting in the direction of motion of an object. In this case, the normal force is acting at a right angle to the motion, hence it does not perform any work on the box. The person's pushing force, the gravitational force, and the frictional force are all acting in the direction of motion of the box, so they contribute to the work being done in moving the box across the floor.
5. Which of the following is an example of a secondary alcohol?
- A. Methanol
- B. Ethanol
- C. Isopropanol
- D. Butanol
Correct answer: C
Rationale: Isopropanol is indeed an example of a secondary alcohol because the carbon atom bearing the hydroxyl group is bonded to two other carbon atoms. In isopropanol, the hydroxyl group is attached to a carbon atom that is bonded to two other carbon atoms. Methanol (Choice A) is a primary alcohol with the hydroxyl group attached to a carbon atom that is bonded to one other carbon atom. Ethanol (Choice B) is also a primary alcohol with the hydroxyl group attached to a carbon atom that is bonded to one other carbon atom. Butanol (Choice D) is a primary alcohol with the hydroxyl group attached to a carbon atom that is bonded to three other carbon atoms, making it a primary alcohol.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access