ATI TEAS 7
TEAS 7 science quizlet
1. What is the primary function of red blood cells in the cardiovascular system?
- A. To transport oxygen throughout the body.
- B. To fight infection and disease.
- C. To help regulate blood clotting.
- D. To remove waste products from the body.
Correct answer: A
Rationale: Red blood cells, also known as erythrocytes, play a crucial role in the cardiovascular system by primarily transporting oxygen from the lungs to the body's tissues and organs. This essential function is carried out through the interaction of hemoglobin, a protein within red blood cells, which binds to oxygen in the lungs and releases it in the body's tissues. Choices B, C, and D are incorrect. Red blood cells are not actively involved in fighting infections, regulating blood clotting, or eliminating waste products from the body.
2. What is the name of the condition characterized by swelling caused by a buildup of lymph fluid?
- A. Anemia
- B. Edema
- C. Hypertension
- D. Diabetes
Correct answer: B
Rationale: Edema is the condition characterized by swelling caused by a buildup of lymph fluid. It occurs when excess fluid is trapped in the body's tissues. Anemia (A) is a condition characterized by a lack of healthy red blood cells, leading to a reduced ability to carry oxygen in the blood. Hypertension (C) is high blood pressure, a condition where the force of the blood against the artery walls is too high. Diabetes (D) is a condition characterized by high blood sugar levels, either due to insufficient insulin production or the body's resistance to insulin, leading to various complications.
3. Why is the electrical conductivity of a strong acid solution higher than that of a weak acid solution?
- A. Strong acids are more concentrated.
- B. Strong acids release more hydrogen ions.
- C. Weak acids are better at dissolving salts.
- D. Strong acids have a lower pH.
Correct answer: B
Rationale: The correct answer is B because strong acids release more hydrogen ions compared to weak acids. This higher concentration of ions in the solution leads to a higher electrical conductivity. Strong acids ionize completely in solution, producing a higher concentration of ions that can conduct electricity, whereas weak acids only partially ionize, resulting in a lower concentration of ions and lower electrical conductivity. Choice A is incorrect because the concentration of the acid does not directly determine its electrical conductivity. Choice C is incorrect as the ability to dissolve salts is not directly related to electrical conductivity. Choice D is incorrect because the pH of the solution, although related to acidity, does not directly determine the electrical conductivity.
4. What is surgically altered during a vasectomy?
- A. Vas deferens
- B. Glans penis
- C. Prostate
- D. Urethra
Correct answer: A
Rationale: During a vasectomy, the vas deferens is surgically altered or cut to prevent the transport of sperm from the testicles to the urethra. This procedure is a form of permanent male sterilization. The glans penis, prostate, and urethra are not surgically altered during a vasectomy. Therefore, the correct answer is the vas deferens (Choice A), as it is the structure specifically targeted and modified in this procedure. The glans penis (Choice B) is the sensitive tip of the penis, the prostate (Choice C) is a gland vital for semen production but not involved in a vasectomy, and the urethra (Choice D) is the tube that carries urine and semen but is not surgically altered in a vasectomy.
5. What is the ultimate end product of glucose breakdown in glycolysis?
- A. ATP
- B. NADPH
- C. Pyruvic acid
- D. Oxygen
Correct answer: C
Rationale: The ultimate end product of glucose breakdown in glycolysis is pyruvic acid. During glycolysis, glucose is broken down into pyruvic acid through a series of enzymatic reactions. ATP is produced as an energy carrier during glycolysis, but it is not the final end product. NADPH is not a direct product of glycolysis; it is mainly produced in the pentose phosphate pathway. Oxygen is not a product of glycolysis but is used as an electron acceptor in the electron transport chain of cellular respiration.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access