ATI TEAS 7
TEAS 7 science practice
1. How does the mass of an object affect its inertia?
- A. Mass has no impact on inertia
- B. Higher mass increases inertia
- C. Higher mass decreases inertia
- D. Mass influences gravitational force, not inertia
Correct answer: B
Rationale: Inertia is the resistance of an object to changes in its state of motion. The greater the mass of an object, the greater its inertia because it requires more force to change its state of motion. This concept aligns with Newton's first law of motion, which states that an object at rest will remain at rest, and an object in motion will continue in motion with the same speed and direction unless acted upon by an external force. Therefore, higher mass increases inertia, making it more difficult to alter the object's state of motion. Choice A is incorrect as mass does impact inertia. Choice C is incorrect as higher mass actually increases inertia, not decreases it. Choice D is incorrect as while mass does affect gravitational force, it also directly impacts inertia.
2. What is the primary function of the atrioventricular (AV) node within the heart?
- A. Generate the electrical impulse for contraction (pacemaker function)
- B. Transmit the electrical impulse from the atria to the ventricles, regulating the timing of contraction.
- C. Increase blood pressure within the ventricles during systole.
- D. Separate oxygenated and deoxygenated blood flow in the heart.
Correct answer: B
Rationale: The correct answer is B: Transmit the electrical impulse from the atria to the ventricles, regulating the timing of contraction. The primary function of the atrioventricular (AV) node is to coordinate the transmission of electrical signals between the atria and the ventricles. It ensures proper timing between atrial and ventricular contractions, allowing for efficient blood pumping through the heart. Choice A is incorrect because the AV node does not generate the initial electrical impulse; that role is typically attributed to the sinoatrial (SA) node. Choice C is incorrect as the AV node does not directly influence blood pressure within the ventricles. Choice D is also incorrect as the separation of oxygenated and deoxygenated blood is primarily achieved by the anatomical structure of the heart (e.g., atria and ventricles) and not the AV node.
3. If a patient had a heart attack and tissue in the left ventricle lost blood flow, what would you most expect to happen?
- A. Blood would not flow from the lungs.
- B. Blood would back up in the legs.
- C. Blood would not be pumped to the body.
- D. Blood would not be oxygenated.
Correct answer: C
Rationale: The correct answer is C: 'Blood would not be pumped to the body.' When tissue in the left ventricle loses blood flow due to a heart attack, the ability of the left ventricle to pump oxygenated blood to the body is compromised. This can lead to serious consequences for the patient's overall health and organ function. Choices A, B, and D are incorrect because a heart attack affecting the left ventricle does not directly impact blood flow from the lungs, cause blood to back up in the legs, or prevent blood from being oxygenated. The primary concern is the compromised ability of the left ventricle to pump blood to the rest of the body, affecting overall circulation and organ perfusion.
4. What is the process of removing waste products from the cell called?
- A. Exocytosis
- B. Endocytosis
- C. Phagocytosis
- D. Pinocytosis
Correct answer: A
Rationale: A) Exocytosis is the process by which cells expel waste products or other substances by fusing a vesicle containing the waste with the cell membrane, releasing its contents outside the cell. This process is essential for maintaining cellular homeostasis by removing waste products from the cell. B) Endocytosis is the process by which cells take in substances by engulfing them in a vesicle formed from the cell membrane. This process is the opposite of exocytosis and is used to bring substances into the cell. C) Phagocytosis is a type of endocytosis where cells engulf solid particles or other cells to form a vesicle called a phagosome. This process is used by immune cells to engulf and destroy pathogens. D) Pinocytosis is a type of endocytosis where cells engulf fluids and dissolved solutes. This process allows cells to take in nutrients.
5. Which of the following is a characteristic of alkenes?
- A. They have a double bond between carbon atoms.
- B. They are saturated hydrocarbons.
- C. They contain only single bonds.
- D. They are derivatives of ammonia.
Correct answer: A
Rationale: Alkenes are hydrocarbons that contain at least one carbon-carbon double bond. This double bond is a key characteristic that distinguishes alkenes from other types of hydrocarbons. Option A correctly identifies this defining feature of alkenes, making it the correct answer. Choices B, C, and D are incorrect. Choice B is incorrect because alkenes are unsaturated hydrocarbons due to the presence of double bonds. Choice C is incorrect as alkenes do not contain only single bonds; they have at least one double bond. Choice D is incorrect because alkenes are not derivatives of ammonia; they are a distinct class of organic compounds with carbon-carbon double bonds.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access