ATI TEAS 7
TEAS 7 science study guide free
1. What happens to the wavelength of a wave when its frequency increases while the speed remains constant?
- A. Wavelength increases
- B. Wavelength decreases
- C. Wavelength remains the same
- D. Wavelength becomes zero
Correct answer: B
Rationale: When the speed of a wave is constant and the frequency increases, the wavelength must decrease to keep the speed constant. The speed of a wave is determined by the product of frequency and wavelength (speed = frequency x wavelength). If the frequency increases while the speed remains constant, the wavelength has to decrease proportionally to maintain the speed unchanged. Therefore, as the frequency increases, the wavelength decreases to ensure that the speed of the wave remains constant. Choice A is incorrect because as frequency increases, wavelength decreases. Choice C is incorrect as the wavelength cannot remain the same when frequency increases while speed is constant. Choice D is incorrect as the wavelength cannot become zero under these conditions.
2. If a patient had a heart attack and tissue in the left ventricle lost blood flow, what would you most expect to happen?
- A. Blood would not flow from the lungs.
- B. Blood would back up in the legs.
- C. Blood would not be pumped to the body.
- D. Blood would not be oxygenated.
Correct answer: C
Rationale: The correct answer is C: 'Blood would not be pumped to the body.' When tissue in the left ventricle loses blood flow due to a heart attack, the ability of the left ventricle to pump oxygenated blood to the body is compromised. This can lead to serious consequences for the patient's overall health and organ function. Choices A, B, and D are incorrect because a heart attack affecting the left ventricle does not directly impact blood flow from the lungs, cause blood to back up in the legs, or prevent blood from being oxygenated. The primary concern is the compromised ability of the left ventricle to pump blood to the rest of the body, affecting overall circulation and organ perfusion.
3. Which vitamin deficiency can lead to kidney stones?
- A. Vitamin A
- B. Vitamin B12
- C. Vitamin D
- D. Vitamin K
Correct answer: C
Rationale: The correct answer is Vitamin D. Vitamin D deficiency can lead to kidney stones because Vitamin D helps regulate calcium levels in the body. Low levels of Vitamin D can result in increased calcium absorption from the intestines, leading to higher levels of calcium in the urine, which can form kidney stones. Choices A, B, and D are incorrect as deficiencies in these vitamins are not directly associated with kidney stone formation.
4. Which of the following is considered an extensive property?
- A. Weight
- B. Density
- C. Conductivity
- D. Malleability
Correct answer: A
Rationale: Weight is correctly identified as an extensive property. Extensive properties are dependent on the amount of the substance present. Weight is directly proportional to the quantity of the substance, making it an extensive property. In contrast, density, conductivity, and malleability are intensive properties, which remain constant regardless of the amount of substance. Therefore, the correct answer is 'Weight' as it changes with the quantity of the substance, aligning with the definition of an extensive property.
5. What is the definition of the term 'momentum' in physics?
- A. Force exerted on an object
- B. Speed of an object in motion
- C. Mass in motion
- D. Distance traveled per unit time
Correct answer: C
Rationale: Momentum in physics is the product of an object's mass and its velocity. It is a vector quantity that describes the motion of an object and is given by the formula p = mv, where p is momentum, m is mass, and v is velocity. Therefore, momentum is best described as the mass of an object in motion. Choice A, 'Force exerted on an object,' is incorrect because force is not equivalent to momentum. Choice B, 'Speed of an object in motion,' is incorrect because speed only considers the rate of motion and not the mass aspect. Choice D, 'Distance traveled per unit time,' is incorrect as it relates to speed and not momentum, which involves both mass and velocity.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access