ATI TEAS 7
TEAS 7 practice test free science
1. How does an increase in temperature generally affect the solubility of most solid solutes in a liquid solvent?
- A. It increases solubility
- B. It decreases solubility
- C. It has no effect on solubility
- D. It depends on the nature of the solute
Correct answer: A
Rationale: In general, increasing temperature tends to increase the solubility of most solid solutes in liquid solvents. This occurs because higher temperatures provide more energy for the solvent molecules to break the solute-solvent attractive forces and allow more solute to dissolve. The increase in temperature facilitates the dissolution process by overcoming the intermolecular forces that hold the solute particles together. Choice B is incorrect because higher temperatures typically lead to greater solubility. Choice C is incorrect as temperature changes usually impact solubility. Choice D is incorrect because although the nature of the solute can influence solubility, the general trend is that higher temperatures enhance solubility for most solid solutes in liquid solvents.
2. Which of the following is the primary physical barrier the body uses to prevent infection?
- A. mucus membranes
- B. stomach acid
- C. skin
- D. urine
Correct answer: C
Rationale: The correct answer is 'C: skin.' The skin is the primary physical barrier the body uses to prevent infection. It acts as a protective shield that prevents harmful microorganisms from entering the body. The outer layer of the skin, known as the epidermis, acts as a tough physical barrier that blocks the entry of pathogens. Additionally, the skin has special immune cells that can help fight off invaders that manage to breach the physical barrier. Choices A, B, and D are incorrect. While mucous membranes, stomach acid, and urine play important roles in the body's defense against pathogens, the primary physical barrier is the skin, which covers the entire body and provides a robust protective barrier.
3. What is the process by which muscles convert chemical energy (ATP) into mechanical energy (movement)?
- A. Photosynthesis
- B. Cellular respiration
- C. Muscle contraction
- D. The sliding filament theory
Correct answer: C
Rationale: Muscle contraction is the correct answer. It is the process by which muscles convert chemical energy (ATP) into mechanical energy (movement). During muscle contraction, the sliding filament theory explains how actin and myosin filaments slide past each other, causing muscle fibers to shorten and generate force. Photosynthesis (option A) is the process by which plants convert light energy into chemical energy. Cellular respiration (option B) is the process by which cells generate ATP from glucose and oxygen. The sliding filament theory (option D) is a detailed explanation of the molecular events that occur during muscle contraction but is not the overall process of converting energy into movement; it focuses on the mechanism within the process of muscle contraction.
4. Which types of waves are capable of interference and diffraction?
- A. Longitudinal waves only
- B. Transverse waves only
- C. Electromagnetic waves only
- D. Both longitudinal and transverse waves
Correct answer: D
Rationale: Both longitudinal and transverse waves are capable of interference and diffraction. Interference occurs when two or more waves overlap and combine, either constructively (increasing amplitude) or destructively (decreasing amplitude). Diffraction is the bending of waves around obstacles or through openings, which can occur with both longitudinal and transverse waves. Choice A is incorrect because only stating longitudinal waves can undergo interference and diffraction is inaccurate. Choice B is also incorrect as transverse waves, not just longitudinal waves, can exhibit these phenomena. Choice C is incorrect because electromagnetic waves are a broad category that includes both longitudinal and transverse waves, so it is not exclusive to either type. The correct answer is D because both longitudinal and transverse waves can demonstrate interference and diffraction.
5. Which property of a substance refers to the force exerted on an object due to gravity?
- A. Mass
- B. Weight
- C. Density
- D. Volume
Correct answer: B
Rationale: The correct answer is 'Weight.' Weight is the force exerted on an object due to gravity. Mass, on the other hand, refers to the amount of matter in an object. Density is the mass per unit volume of a substance, and volume is the amount of space occupied by an object. In this context, weight specifically relates to the gravitational force acting on an object, making it the most appropriate choice among the options provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access