ATI TEAS 7
TEAS 7 practice test science
1. Electroencephalography (EEG) measures electrical activity in the brain, primarily reflecting the activity of:
- A. Neurons
- B. Astrocytes
- C. Oligodendrocytes
- D. Microglia
Correct answer: A
Rationale: EEG measures electrical activity in the brain, primarily reflecting the activity of neurons. Neurons are the primary cells responsible for generating electrical impulses and transmitting information in the brain. Astrocytes, oligodendrocytes, and microglia are other types of cells in the brain that have different functions and are not primarily involved in generating the electrical activity measured by EEG. Astrocytes support neuronal function, oligodendrocytes produce myelin to insulate axons, and microglia are involved in immune responses and maintaining brain health, but they do not generate the electrical impulses detected by EEG.
2. How does an increase in temperature generally affect the solubility of most solid solutes in a liquid solvent?
- A. It increases solubility
- B. It decreases solubility
- C. It has no effect on solubility
- D. It depends on the nature of the solute
Correct answer: A
Rationale: In general, increasing temperature tends to increase the solubility of most solid solutes in liquid solvents. This occurs because higher temperatures provide more energy for the solvent molecules to break the solute-solvent attractive forces and allow more solute to dissolve. The increase in temperature facilitates the dissolution process by overcoming the intermolecular forces that hold the solute particles together. Choice B is incorrect because higher temperatures typically lead to greater solubility. Choice C is incorrect as temperature changes usually impact solubility. Choice D is incorrect because although the nature of the solute can influence solubility, the general trend is that higher temperatures enhance solubility for most solid solutes in liquid solvents.
3. A ball is thrown upwards. Which of the following statements is TRUE about its potential energy and kinetic energy at the peak of its trajectory?
- A. Both potential and kinetic energy are zero.
- B. Potential energy is maximum and kinetic energy is minimum.
- C. Potential energy is minimum and kinetic energy is maximum.
- D. Both potential and kinetic energy remain constant.
Correct answer: B
Rationale: At the peak of its trajectory, the ball momentarily stops moving before falling back down. This means its kinetic energy is at a minimum because it has come to a stop. At the same time, its potential energy is at a maximum because it is at the highest point in its trajectory, where it has the most potential to fall and convert that potential energy into kinetic energy as it descends. Choice A is incorrect because at the peak, the ball still has potential energy due to its height. Choice C is incorrect because kinetic energy is at a minimum when the ball is momentarily at rest. Choice D is incorrect because the energy conversion between potential and kinetic energy occurs at different points in the trajectory.
4. What is the primary function of nervous tissue?
- A. Movement
- B. Protection
- C. Communication and coordination
- D. Nutrient transport
Correct answer: C
Rationale: The primary function of nervous tissue is communication and coordination within the body. Nervous tissue is composed of neurons that transmit electrical signals and supporting cells known as neuroglia. Movement is primarily controlled by the muscular system, protection is mainly provided by the skeletal system and immune system, and nutrient transport is carried out by the circulatory system. Therefore, choices A, B, and D are incorrect as they do not align with the primary function of nervous tissue.
5. Parkinson's disease is a neurodegenerative disorder affecting which neurotransmitter?
- A. Dopamine
- B. Acetylcholine
- C. Serotonin
- D. Glutamate
Correct answer: A
Rationale: Parkinson's disease is primarily caused by the loss of dopamine-producing neurons in the brain. Dopamine is a neurotransmitter that plays a crucial role in coordinating movement. The reduction of dopamine levels leads to the characteristic motor symptoms of Parkinson's disease, such as tremors, rigidity, and bradykinesia. Choice B, acetylcholine, is involved in functions like muscle contraction and autonomic nervous system regulation but is not primarily affected in Parkinson's disease. Serotonin (Choice C) is involved in mood regulation and sleep, not the main neurotransmitter affected in Parkinson's disease. Glutamate (Choice D) is the major excitatory neurotransmitter in the central nervous system and is not primarily implicated in Parkinson's disease pathophysiology.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access