ATI TEAS 7
TEAS 7 science quizlet
1. During which phase of the cell cycle does cytokinesis typically occur?
- A. Interphase
- B. Mitosis
- C. Meiosis
- D. G2 phase
Correct answer: B
Rationale: Cytokinesis is the process of dividing the cytoplasm of a cell into two daughter cells after the nucleus has divided during mitosis. In the cell cycle, cytokinesis typically occurs at the end of the mitotic phase, following the separation of the duplicated chromosomes into two identical sets in the daughter nuclei. Interphase (option A) is the phase where the cell grows, carries out its normal functions, and prepares for cell division, but cytokinesis does not occur during this phase. Meiosis (option C) is a specialized type of cell division that occurs in sexually reproducing organisms to produce gametes, and cytokinesis occurs at the end of meiosis II, not meiosis I. G2 phase (option D) is the phase of the cell cycle following DNA replication in S phase and preceding mitosis, where the cell prepares for cell division, but cytokinesis occurs during mitosis, not in the G2 phase.
2. Which vitamin requires intrinsic factor for proper absorption?
- A. Vitamin A
- B. Vitamin C
- C. Vitamin D
- D. Vitamin B12
Correct answer: D
Rationale: Vitamin B12 requires intrinsic factor, a glycoprotein secreted by the parietal cells of the stomach, for proper absorption in the small intestine. Intrinsic factor binds to vitamin B12 and facilitates its absorption in the ileum. Deficiency in intrinsic factor can lead to pernicious anemia, a condition characterized by a lack of vitamin B12 absorption. Options A, B, and C are incorrect. Vitamin A is absorbed in the small intestine with the help of bile salts; Vitamin C is absorbed in the small intestine via active transport; Vitamin D is absorbed in the small intestine through a process involving bile salts and micelles. It is essential for students to understand this relationship as it highlights the importance of intrinsic factor in the absorption of specific vitamins and the consequences of its deficiency.
3. What is the relationship between the Pauli exclusion principle and the structure of the atom?
- A. It defines the maximum number of electrons allowed in each energy level.
- B. It explains why oppositely charged particles attract each other.
- C. It describes the wave-particle duality of electrons.
- D. It determines the arrangement of protons and neutrons in the nucleus.
Correct answer: A
Rationale: The Pauli exclusion principle states that no two electrons in an atom can have the same set of quantum numbers. This principle defines the maximum number of electrons allowed in each energy level, influencing the structure of the atom. Choice B is incorrect as it refers to the concept of electrostatic attraction, not directly related to the Pauli exclusion principle. Choice C is incorrect as it pertains to the wave-particle duality, a different aspect of quantum mechanics. Choice D is incorrect as it relates to the arrangement of protons and neutrons in the nucleus, not governed by the Pauli exclusion principle.
4. What is the diastole cycle in the heart?
- A. Relaxation of the heart
- B. Contraction of the heart
- C. Pulse rate of the heart
- D. Blood circulation
Correct answer: A
Rationale: The diastole cycle in the heart refers to the relaxation phase, where the heart chambers relax and fill with blood. This phase is crucial for the heart to refill and prepare for the next contraction (systole), which pumps blood out of the heart. Therefore, the correct answer is choice A, 'Relaxation of the heart.' Choices B, C, and D are incorrect in the context of cardiac physiology. Choice B, 'Contraction of the heart,' refers to systole, the phase of heart contraction. Choice C, 'Pulse rate of the heart,' is related to the number of heartbeats per minute, not the diastole cycle specifically. Choice D, 'Blood circulation,' is a broader term that encompasses the entire circulatory system rather than focusing on the heart's specific relaxation phase.
5. Differentiate between genotype and phenotype in the context of gene expression.
- A. Genotype refers to the physical manifestation of a trait, while phenotype represents its underlying genetic makeup.
- B. Genotype encompasses the spectrum of possible traits encoded by an organism's genes, while phenotype signifies the specific trait observed.
- C. Genotype denotes the presence of dominant alleles, while phenotype reflects the influence of recessive alleles.
- D. There is no distinction; both terms are interchangeable.
Correct answer: B
Rationale: - Genotype refers to the genetic makeup of an organism, including all the genes and alleles it possesses. - Phenotype, on the other hand, refers to the observable physical characteristics or traits of an organism, which result from the interaction between its genotype and the environment. - While genotype represents the genetic potential or range of traits that an organism can express, phenotype reflects the actual expression of specific traits. - Therefore, option B correctly captures the distinction between genotype and phenotype in the context of gene expression.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access