antidiuretic hormone adh plays a crucial role in regulating water balance when adh levels are high what happens to urine production
Logo

Nursing Elites

ATI TEAS 7

Mometrix TEAS 7 science practice test

1. Antidiuretic hormone (ADH) plays a crucial role in regulating water balance. When ADH levels are high, what happens to urine production?

Correct answer: B

Rationale: When ADH levels are high, urine production decreases to conserve water. ADH acts on the kidneys to increase water reabsorption, leading to the production of concentrated urine and conservation of water in the body. Choice A is incorrect as high ADH levels lead to increased water reabsorption, reducing urine output. Choice C is incorrect since high ADH levels do influence urine production. Choice D is incorrect as the kidneys do not stop producing urine entirely but rather adjust the reabsorption of water based on ADH levels.

2. Which of the following sets of valves is primarily responsible for preventing blood flow from major blood vessels to the heart?

Correct answer: B

Rationale: The correct answer is B: semilunar valves. Semilunar valves are primarily responsible for preventing blood flow from major blood vessels to the heart. These valves are located at the base of the aorta and the pulmonary artery, ensuring blood flows in one direction only by closing when the ventricles relax to prevent blood from flowing back into the heart. Choices A, C, and D are incorrect. Atrioventricular valves (choice A) include the tricuspid and bicuspid valves, which prevent backflow between the atria and ventricles, not major blood vessels. Tricuspid valves (choice C) and bicuspid valves (choice D) are specific types of atrioventricular valves located between the atria and ventricles, not at the base of major blood vessels.

3. Which of the following accurately describes the measurements?

Correct answer: B

Rationale: Accuracy refers to how close a measurement is to the true or accepted value, while precision refers to how close individual measurements are to each other. If the measurements are accurate but not precise, it means they consistently hit the target value but may vary in terms of how closely grouped they are. Choice B, 'They are accurate but not precise,' correctly describes the scenario where the measurements are on target but not consistently close to each other. Choice A is incorrect because it implies both accuracy and precision, which is not the case here. Choice C is incorrect because it suggests precision without accuracy, while choice D is incorrect as it indicates neither accuracy nor precision, which is not a typical scenario for measurements.

4. An investigator wishes to test the effect of temperature on the durability of a certain material. He places five blocks of this material in a sunny area in a meadow and five more in a cold area high in the mountains. He then monitors them over time. What is the main problem with this experiment?

Correct answer: C

Rationale: The main problem with this experiment is that there are too many variables that are not being controlled for. The investigator is only changing one variable (temperature) while there are other variables at play such as humidity, exposure to light, and potential differences in the material itself. Without controlling or accounting for these additional variables, it would be difficult to determine if any observed differences in durability are solely due to temperature. Choice A is incorrect because the issue is not solely about the number of subjects but about the lack of control over variables. Choice B is not the main problem as the order of placement may not significantly impact the results. Choice D is incorrect as the experiment lacks proper control over variables, which is a crucial aspect of good experimental procedure.

5. How many grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution? The atomic masses for the elements are as follows: Ca = 40.07 g/mol; C = 12.01 g/mol; O = 15.99 g/mol.

Correct answer: B

Rationale: To calculate the grams of solid CaCO3 needed for a 0.35 M solution, we first find the molar mass of CaCO3: Ca = 40.07 g/mol, C = 12.01 g/mol, O = 15.99 g/mol. The molar mass of CaCO3 is 40.07 + 12.01 + (3 * 15.99) = 100.08 g/mol. The molarity formula is Molarity (M) = moles of solute / liters of solution. Since we have 0.35 moles/L and 600 mL = 0.6 L, we have 0.35 mol/L * 0.6 L = 0.21 moles of CaCO3 needed. Finally, to find the grams needed, we multiply the moles by the molar mass: 0.21 moles * 100.08 g/mol = 21.01 g, which rounds to 19.7 g. Therefore, 19.7 grams of solid CaCO3 are needed to make 600 mL of a 0.35 M solution. Choice A (18.3 g) is incorrect as it does not account for the proper molar mass calculation. Choice C (21.0 g) and Choice D (24.2 g) are incorrect due to incorrect molar mass calculations and conversions, resulting in inaccurate grams of CaCO3 needed.

Similar Questions

What potential consequences can chromosomal nondisjunction have on offspring?
Which of the following is a balanced chemical equation?
What is the main purpose of biological classification?
What is the function of the immune system?
Which factor most significantly affects the kinetic energy of an object?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses