ATI TEAS 7
TEAS 7 practice test science
1. What type of epithelium lines the inner surface of blood vessels?
- A. Simple squamous epithelium
- B. Simple columnar epithelium
- C. Stratified squamous epithelium
- D. Stratified columnar epithelium
Correct answer: A
Rationale: The correct answer is simple squamous epithelium (Choice A). The inner surface of blood vessels is lined by a single layer of flattened cells, known as simple squamous epithelium. This epithelium type is thin and allows for efficient diffusion and filtration, which is essential for the exchange of gases and nutrients across blood vessel walls. Simple columnar epithelium (Choice B) is typically found in the lining of the gastrointestinal tract and is responsible for absorption and secretion. Stratified squamous epithelium (Choice C) is commonly found in the skin, providing protection against mechanical stress. Stratified columnar epithelium (Choice D) is not a characteristic epithelium type found in the lining of blood vessels, as it is more commonly present in specific regions of the body like parts of the male urethra and the conjunctiva of the eye.
2. Which blood vessels transport blood from the capillaries back to the heart?
- A. Arterioles
- B. Veins
- C. Venules
- D. Capillaries
Correct answer: B
Rationale: Veins are the correct answer as they are the blood vessels that carry blood from the capillaries back to the heart. Veins have thinner walls compared to arteries and contain valves to prevent blood from flowing backward. This transport of blood from the capillaries to the heart is essential for the circulatory system to maintain proper blood flow and oxygenation levels. Arterioles are small branches of arteries that lead to capillaries, not vessels that transport blood back to the heart. Venules are small vessels that collect blood from capillaries and lead to veins. Capillaries are the smallest blood vessels where the exchange of gases and nutrients occurs between blood and tissues, not vessels that transport blood back to the heart.
3. If a biochemist isolates a large amount of pyruvate, which part of the cell is he working with?
- A. Chloroplasts
- B. Cytoplasm
- C. Mitochondria
- D. Nucleus
Correct answer: B
Rationale: The correct answer is B: Cytoplasm. Pyruvate is a product of glycolysis, a metabolic pathway that takes place in the cytoplasm of the cell. Therefore, a biochemist isolating a large amount of pyruvate would be working with the cytoplasm of the cell. Choice A, Chloroplasts, is incorrect because pyruvate is not produced in chloroplasts, which are responsible for photosynthesis. Choice C, Mitochondria, is incorrect as pyruvate is produced in the cytoplasm before entering the mitochondria for further metabolism. Choice D, Nucleus, is incorrect as the nucleus is not involved in the production or isolation of pyruvate, which is a metabolic intermediate.
4. Which type of joint allows for the widest range of motion, similar to the shoulder joint?
- A. Hinge joint
- B. Ball-and-socket joint
- C. Gliding joint
- D. Fixed joint
Correct answer: B
Rationale: The correct answer is B: Ball-and-socket joint. Ball-and-socket joints, like the shoulder joint, allow for the widest range of motion in multiple directions. This type of joint consists of a rounded bone (the 'ball') fitting into a cup-like socket, enabling movements such as flexion, extension, abduction, adduction, and rotation. Choice A, Hinge joint, allows movement in one plane, like a door hinge, and does not offer the same range of motion as a ball-and-socket joint. Choice C, Gliding joint, permits limited motion in various directions but not as wide as a ball-and-socket joint. Choice D, Fixed joint, does not allow any motion as it is immovable, unlike the shoulder joint which is highly mobile.
5. During nuclear transmutation, a target nucleus is bombarded with a particle to create:
- A. A heavier isotope of the same element
- B. A lighter isotope of the same element
- C. An entirely new element
- D. A chain reaction of nuclear fission
Correct answer: C
Rationale: During nuclear transmutation, a target nucleus is bombarded with a particle to create an entirely new element. This process involves changing the number of protons in the nucleus, resulting in the creation of a different element. Options A and B are incorrect because nuclear transmutation leads to the formation of a new element, not a heavier or lighter isotope of the same element. Option D, a chain reaction of nuclear fission, is incorrect as nuclear transmutation involves the direct conversion of one element into another through bombardment with particles, not the initiation of a fission chain reaction.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access