what is the principle behind optical fibers used in communication
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 science practice

1. What is the principle behind optical fibers used in communication?

Correct answer: C

Rationale: Optical fibers used in communication rely on the principle of total internal reflection guiding light through the fiber core. Total internal reflection occurs when light traveling through the core of the fiber is reflected back into the core due to the higher refractive index of the core compared to the cladding. This reflection ensures that the light remains confined within the core and propagates along the fiber without significant loss, allowing for efficient transmission of signals over long distances in optical communication systems. Choice A is incorrect because optical fibers do not primarily rely on simple reflection; instead, they utilize total internal reflection to guide light. Choice B is incorrect as the primary principle is not the refraction of light due to different densities within the fiber, but rather total internal reflection. Choice D is incorrect as diffraction is not the main principle behind optical fibers, which mainly rely on total internal reflection to guide light through the fiber core.

2. How do spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints?

Correct answer: D

Rationale: A) Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset: Proper attachment of chromosomes to spindle fibers is essential for accurate segregation of genetic material during cell division. Misaligned chromosomes that fail to attach to microtubules can lead to delays in anaphase onset, allowing the cell to correct errors before proceeding with division. B) The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression: Kinetochores at the centromeres help attach chromosomes to spindle fibers. When kinetochores are unattached or improperly attached to microtubules, they signal the cell to pause cell cycle progression, ensuring proper chromosome alignment before division. C) Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins: While microtubule dynamics are crucial for cell division, microtubule instability and rapid depolymerization can disrupt chromosome attachment. However, this mechanism is not directly related to the activation of cell cycle checkpoint proteins, making this statement incorrect. Therefore, choices A and B accurately describe how spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints, making option D the correct answer.

3. Which of the following is the main organ responsible for producing antibodies?

Correct answer: C

Rationale: Antibodies are proteins produced by specialized white blood cells called B lymphocytes (B cells). These B cells mature in the bone marrow, where they undergo a process of differentiation and maturation to become plasma cells that secrete antibodies. The bone marrow is the primary site for the production of B cells and antibodies in the immune system. The thymus gland is responsible for the maturation of T lymphocytes (T cells), not antibody production. The spleen and lymph nodes play roles in filtering and trapping pathogens but are not the main organs responsible for producing antibodies.

4. What does the innate immune system provide?

Correct answer: A

Rationale: The correct answer is A. The innate immune system provides nonspecific, immediate defense against pathogens. It is the body's first line of defense in responding to infections and does not involve memory cells or specific long-term immune responses like the adaptive immune system. Choice B is incorrect because specific, long-term immune responses through memory cells are characteristics of the adaptive immune system, not the innate immune system. Choice C is incorrect because the innate immune system does not provide specific, long-term immune responses. Choice D is incorrect because the innate immune system does provide an immediate defense against pathogens.

5. What is the length of DNA that can code for a particular protein?

Correct answer: C

Rationale: The correct answer is C: Gene. A gene is a specific segment of DNA that contains the information necessary to produce a particular protein. Genes are responsible for coding proteins, and each gene carries the instructions for a specific protein. Chromosomes consist of many genes and are not a specific length that codes for a protein. Nucleotides are the building blocks of DNA and are not a length that codes for a protein. Ribosomes are cellular organelles involved in protein synthesis and do not directly code for proteins.

Similar Questions

Why is the electrical conductivity of a strong acid solution higher than that of a weak acid solution?
Which gland in the endocrine system is responsible for the production of red blood cells?
Two mice are both heterozygous for two traits: white fur (Ww) and short fur (Ss). Their offspring are most likely to have which of the following genotypes for these traits?
Which structure in the body is responsible for producing testosterone?
Where is the major site for nutrient absorption in the digestive system?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses