a spring with a spring constant of 100 nm is stretched 02 m from its equilibrium position what is the potential energy stored in the spring
Logo

Nursing Elites

ATI TEAS 7

TEAS version 7 quizlet science

1. A spring with a spring constant of 100 N/m is stretched 0.2 m from its equilibrium position. What is the potential energy stored in the spring?

Correct answer: C

Rationale: The potential energy stored in a spring is given by the formula \(PE = \frac{1}{2}kx^2\), where \(k\) is the spring constant and \(x\) is the displacement from the equilibrium position. Substituting the given values, we get \(PE = \frac{1}{2} \times 100 \times (0.2)^2 = 8\) J.

2. How does RNA polymerase differ from DNA polymerase?

Correct answer: B

Rationale: Rationale: A) This statement is incorrect. RNA polymerase and DNA polymerase are not identical in function and structure. They have different roles in the cell. B) This statement is correct. Unlike DNA polymerase, RNA polymerase does not require a primer to initiate RNA synthesis. RNA polymerase can start the synthesis of RNA de novo. C) This statement is incorrect. RNA polymerase is specialized for synthesizing RNA, not DNA. DNA polymerase is responsible for synthesizing DNA. D) This statement is correct. RNA polymerase can only synthesize RNA, while DNA polymerase is responsible for synthesizing DNA.

3. What two factors enable some intercellular chemical signals to diffuse across cell membranes and bind to intracellular receptors?

Correct answer: A

Rationale: The correct answer is A: 'They are small and soluble.' Small and soluble molecules can easily pass through cell membranes and bind to intracellular receptors. Being small allows them to pass through the membrane, while being soluble enables them to dissolve in the aqueous environment inside the cell. Choice B is incorrect because large molecules typically cannot pass through the cell membrane easily. Choices C and D are incorrect because insoluble molecules would not dissolve in the aqueous environment inside the cell, hindering their ability to bind to intracellular receptors.

4. Which part of the brain is responsible for controlling involuntary actions like breathing and heart rate?

Correct answer: B

Rationale: The correct answer is the Medulla oblongata. This region of the brain is located in the brainstem and is responsible for controlling vital autonomic functions such as breathing, heart rate, and blood pressure. The Cerebellum (Choice A) is primarily involved in coordination and balance. The Cerebrum (Choice C) is responsible for higher brain functions like thinking and voluntary muscle movement. The Thalamus (Choice D) acts as a relay station for sensory information but is not primarily responsible for controlling involuntary actions like breathing and heart rate.

5. What condition is characterized by progressive muscle weakness and wasting?

Correct answer: A

Rationale: Muscular dystrophy is a genetic disorder characterized by progressive muscle weakness and wasting due to mutations in genes responsible for muscle cells' structure and function. Myositis is an inflammatory muscle disease, fibromyalgia is a chronic pain condition, and carpal tunnel syndrome affects the hand and arm nerves, but none present with the progressive muscle weakness and wasting seen in muscular dystrophy.

Similar Questions

Lymph nodes, found along lymphatic vessels, are important for:
At which step in the scientific method might a scientist create a model?
Which process is characterized by nuclear fission?
Which hormone is crucial for stimulating sperm production in males?
How does sunscreen protect the skin from harmful ultraviolet (UV) rays?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses