ATI TEAS 7
TEAS version 7 quizlet science
1. A spring with a spring constant of 100 N/m is stretched 0.2 m from its equilibrium position. What is the potential energy stored in the spring?
- A. 2 J
- B. 4 J
- C. 8 J
- D. 20 J
Correct answer: C
Rationale: The potential energy stored in a spring is given by the formula \(PE = \frac{1}{2}kx^2\), where \(k\) is the spring constant and \(x\) is the displacement from the equilibrium position. Substituting the given values, we get \(PE = \frac{1}{2} \times 100 \times (0.2)^2 = 8\) J.
2. The above experimental design description is an example of which of the following types of experiments?
- A. field experiment
- B. natural experiment
- C. controlled experiment
- D. observational study
Correct answer: C
Rationale: The above experimental design description involves the manipulation of an independent variable (light exposure) to observe its effects on the dependent variable (plant growth) under controlled conditions. In a controlled experiment, researchers actively manipulate one or more variables while keeping all other variables constant to establish cause-and-effect relationships. Choice A, a field experiment, typically takes place in a real-world setting but still involves manipulation and control of variables. Choice B, a natural experiment, involves observing naturally occurring differences in variables without researcher intervention. Choice D, an observational study, does not involve manipulation of variables, making it different from the described experimental design.
3. What is the scientific term for the involuntary rhythmic contraction and relaxation of the heart muscle?
- A. Peristalsis
- B. Myogenesis
- C. Myocardial contractility
- D. Systole and diastole
Correct answer: D
Rationale: The correct answer is D: Systole and diastole. Systole and diastole are the two phases of the cardiac cycle where the heart muscle contracts (systole) and relaxes (diastole) rhythmically to pump blood throughout the body. This rhythmic process ensures proper blood circulation by pumping blood to the lungs and the rest of the body. Peristalsis, on the other hand, refers to the involuntary constriction and relaxation of the muscles in the gastrointestinal tract, aiding in the movement of food and waste. Myogenesis is the process of muscle tissue formation, and myocardial contractility pertains to the heart muscle's ability to contract efficiently.
4. The Hardy-Weinberg equilibrium describes a population that is:
- A. Undergoing rapid evolution due to strong directional selection.
- B. Not evolving and at genetic equilibrium with stable allele frequencies.
- C. Experiencing a founder effect leading to a reduction in genetic diversity.
- D. Dominated by a single homozygous genotype that eliminates all variation.
Correct answer: B
Rationale: The Hardy-Weinberg equilibrium describes a theoretical population in which allele frequencies remain constant from generation to generation, indicating that the population is not evolving. This equilibrium occurs under specific conditions: no mutation, no gene flow, random mating, a large population size, and no natural selection. In this scenario, all genotypes are in proportion to the allele frequencies, and genetic diversity is maintained. Options A, C, and D do not accurately describe a population in Hardy-Weinberg equilibrium. Option A suggests rapid evolution due to strong directional selection, which would disrupt the equilibrium. Option C mentions a founder effect, which can reduce genetic diversity but is not a characteristic of a population in Hardy-Weinberg equilibrium. Option D describes a population dominated by a single homozygous genotype, which also does not align with the genetic diversity seen in a population at Hardy-Weinberg equilibrium.
5. What is hemoglobin?
- A. an enzyme
- B. a protein
- C. a lipid
- D. an acid
Correct answer: B
Rationale: Hemoglobin is a protein found in red blood cells that plays a crucial role in transporting oxygen from the lungs to the tissues and organs in the body. It is composed of four protein subunits, each containing a heme group that binds to oxygen molecules. Choice A is incorrect as hemoglobin is not an enzyme, but rather a protein. Choice C is incorrect as hemoglobin is not a lipid, but a protein. Choice D is incorrect as hemoglobin is not an acid, but a protein.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access