a satellite orbits the earth at constant speed which force is responsible for its circular motion
Logo

Nursing Elites

ATI TEAS 7

TEAS Test 7 science quizlet

1. A satellite orbits the Earth at a constant speed. Which force is responsible for its circular motion?

Correct answer: A

Rationale: The gravitational force from the Earth is responsible for keeping the satellite in its circular orbit. This force provides the necessary centripetal force required to maintain the circular motion of the satellite. The gravitational force acts as the centripetal force, pulling the satellite towards the center of the Earth, thereby keeping it in its circular path. Choices B, C, and D do not provide the necessary force to keep the satellite in its circular path. Thrust from the satellite's engine would change the speed or direction of the satellite, not maintain its circular path. Friction between the satellite and the atmosphere would act as a resistive force, slowing down the satellite rather than maintaining its orbit. The normal force from the Earth's surface is perpendicular to the surface and does not contribute to the circular motion of the satellite. Therefore, the correct answer is A, as the gravitational force acts as the centripetal force to keep the satellite in its circular path around the Earth.

2. What is the primary function of the stomach?

Correct answer: A

Rationale: The main function of the stomach is to store food, churn it, and break it down into smaller pieces through mechanical digestion. This process is facilitated by the mixing of food with gastric juices, including stomach acid. The mechanical breakdown in the stomach helps initiate the digestion of food before it progresses to the small intestine for further digestion and nutrient absorption. Absorption of nutrients into the bloodstream primarily occurs in the small intestine, not the stomach. Enzymes that aid in digesting food are primarily produced in the pancreas and small intestine, not in the stomach. The elimination of waste products from the body mainly occurs through the large intestine and rectum, not the stomach.

3. What is the process of breaking down lipids into fatty acids and glycerol called?

Correct answer: A

Rationale: - Lipolysis is indeed the correct answer. It is the process of breaking down lipids (fats) into fatty acids and glycerol. This process occurs in adipose tissue and is important for releasing stored energy in the form of fatty acids. - Gluconeogenesis is the process of synthesizing glucose from non-carbohydrate sources like amino acids and glycerol, not breaking down lipids. - The Krebs cycle (also known as the citric acid cycle) is a series of chemical reactions that occur in the mitochondria to generate energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. - Oxidative phosphorylation is the final stage of cellular respiration where ATP is produced through the transfer of electrons in the electron transport chain. It is not specifically related to the breakdown of lipids into fatty acids and glycerol.

4. In the reaction 2Na + 2H2O → 2NaOH + H2, what is the limiting reactant when 3 moles of sodium react with 2 moles of water?

Correct answer: A

Rationale: The balanced chemical equation indicates that 2 moles of sodium react with 2 moles of water to yield 2 moles of sodium hydroxide and 1 mole of hydrogen gas. When 3 moles of sodium react with only 2 moles of water, sodium becomes the limiting reactant as it is present in excess compared to the available water molecules. This situation arises because not all sodium atoms can fully react with the limited amount of water, resulting in sodium being the limiting reactant in this specific case. Choice B (H2O), choice C (NaOH), and choice D (H2) are incorrect as they are not the limiting reactant in the given reaction scenario.

5. Which molecule is responsible for storing and providing a quick source of energy during short bursts of intense physical activity, such as weightlifting or sprinting?

Correct answer: A

Rationale: ATP (Adenosine Triphosphate) is the molecule responsible for storing and providing a quick source of energy during short bursts of intense physical activity like weightlifting or sprinting. ATP is broken down to release energy rapidly when muscles need quick, intense efforts. Glucose is a source of energy but must be converted into ATP before it can be used by muscles. Myoglobin is a protein that stores oxygen in muscle cells and does not directly provide energy. Lactic acid is produced during intense exercise but is not the primary molecule responsible for providing quick energy during short bursts of intense physical activities.

Similar Questions

Which type of mutation involves a change in the number of chromosomes?
Dense irregular connective tissue, found in tendons and ligaments, provides:
What is the primary organ responsible for filtering urine?
How many neutrons are in an atom of the following element with a mass number of 50?
What is the function of introns in eukaryotic genes?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses