ATI TEAS 7
TEAS Test 7 science
1. A car is accelerating down a hill. Which of the following forces is NOT acting on the car?
- A. Gravitational force
- B. Normal force from the road
- C. Air resistance
- D. The car's engine force
Correct answer: B
Rationale: When a car is accelerating down a hill, the normal force from the road is not acting on the car. The normal force is the force exerted by a surface to support the weight of an object resting on it. As the car moves downhill, the normal force decreases since the road is no longer pushing back against the car's weight due to the downhill motion. Gravitational force pulls the car downhill, air resistance opposes the car's motion, and the car's engine force propels it forward. Therefore, the correct answer is B, as the normal force from the road is not acting on the car while it accelerates downhill.
2. What do isotopes of the same element have in common?
- A. Identical number of protons and neutrons.
- B. Identical chemical properties.
- C. Identical number of electrons.
- D. Identical mass number.
Correct answer: D
Rationale: Isotopes of the same element have the same number of protons, which defines the element, but different numbers of neutrons. This difference in neutron count results in isotopes of the same element having different mass numbers. Chemical properties are determined by the arrangement of electrons in an atom, so isotopes of the same element may exhibit slightly different chemical behaviors due to different neutron numbers. The number of electrons can vary in isotopes, affecting their charge. However, the mass number, which is the sum of protons and neutrons, is the same for isotopes of the same element. Therefore, the correct answer is that isotopes of the same element share an identical mass number.
3. What is the process by which lighter nuclei fuse to form heavier nuclei, releasing a large amount of energy?
- A. Fission
- B. Fusion
- C. Radioactivity
- D. Chain reaction
Correct answer: B
Rationale: Fusion is the process by which lighter nuclei combine to form heavier nuclei, releasing a large amount of energy in the process. This process is the source of energy in stars, including our Sun. Fission, the process of splitting heavier nuclei into lighter nuclei, is not correct. Radioactivity involves the emission of particles or radiation from the nucleus of an unstable atom, which is different from fusion. A chain reaction is a self-sustaining reaction where the products of one reaction cause further reactions, which is unrelated to fusion.
4. In which direction do the particles of the medium move in a transverse wave?
- A. Perpendicular to the direction of wave travel
- B. Parallel to the direction of wave travel
- C. In a circular motion
- D. Opposite to the direction of wave travel
Correct answer: A
Rationale: In a transverse wave, the particles of the medium move perpendicular to the direction of wave travel. This means that the particles move up and down or side to side as the wave passes through the medium. This motion creates crests and troughs in the wave, leading to the characteristic oscillation observed in transverse waves. Choice B is incorrect because in transverse waves, the particle movement is not parallel to the direction of wave travel. Choice C is incorrect as the particles do not move in a circular motion in a transverse wave. Choice D is incorrect as the particles do not move opposite to the direction of wave travel; they move perpendicular to it.
5. If the mass of an object remains constant and its velocity doubles, how does its momentum change?
- A. Momentum doubles
- B. Momentum halves
- C. Momentum quadruples
- D. Momentum remains the same
Correct answer: C
Rationale: Momentum is calculated as the product of an object's mass and its velocity. When the mass remains constant and the velocity doubles, the momentum will increase by a factor of 2 (doubling) due to the increase in velocity. Therefore, the momentum will quadruple (2 x 2 = 4) when the velocity doubles. This relationship between momentum and velocity showcases the direct proportionality of momentum to velocity, given a constant mass. Choices A, B, and D are incorrect. Momentum does not simply double or halve when the velocity doubles; it quadruples as it is directly proportional to the velocity. Hence, the correct answer is C, where momentum quadruples in this scenario.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access