ATI TEAS 7
ATI TEAS 7 Science
1. Which type of joint allows for the greatest range of motion?
- A. Hinge joint
- B. Ball-and-socket joint
- C. Pivot joint
- D. Saddle joint
Correct answer: B
Rationale: The correct answer is B: Ball-and-socket joint. The ball-and-socket joint, like the shoulder joint, allows for the greatest range of motion due to its structure, enabling movement in multiple directions. In contrast, hinge joints, pivot joints, and saddle joints have more restricted ranges of motion compared to ball-and-socket joints. Hinge joints primarily allow movement in one plane, pivot joints allow rotation around a central axis, and saddle joints have limited movement compared to ball-and-socket joints.
2. What is the term for the process of exchanging gases (oxygen and carbon dioxide) between the blood and the tissues?
- A. Inhalation
- B. Exhalation
- C. External respiration
- D. Internal respiration
Correct answer: C
Rationale: External respiration is the correct term for the process of exchanging gases (oxygen and carbon dioxide) between the blood and the tissues. It specifically refers to the exchange of gases that occurs in the lungs, where oxygen is absorbed into the bloodstream and carbon dioxide is released from the bloodstream to be exhaled. Inhalation and exhalation, choices A and B, are phases of the breathing process that involve the intake and expulsion of air into and out of the lungs, respectively. Internal respiration, choice D, is the process of gas exchange that happens at the cellular level between the blood and body tissues, not between the blood and the lungs or tissues as in external respiration. Therefore, external respiration is the most appropriate term for the described gas exchange process in the question.
3. Identify the correct sequence of the 3 primary body planes as numbered 1, 2, and 3 in the above image.
- A. Plane 1 is coronal, plane 2 is sagittal, and plane 3 is transverse.
- B. Plane 1 is sagittal, plane 2 is coronal, and plane 3 is medial.
- C. Plane 1 is coronal, plane 2 is sagittal, and plane 3 is medial.
- D. Plane 1 is sagittal, plane 2 is coronal, and plane 3 is transverse.
Correct answer: A
Rationale: In the standard anatomical position, plane 1 (coronal/frontal plane) divides the body into anterior and posterior portions, plane 2 (sagittal plane) divides the body into left and right portions, and plane 3 (transverse/horizontal plane) divides the body into superior and inferior portions. Therefore, the correct sequence is Plane 1 as coronal, Plane 2 as sagittal, and Plane 3 as transverse, which corresponds to Choice A. Choice B is incorrect as it misidentifies the planes. Plane 2 cannot be coronal as it specifically divides the body into left and right portions. Choice C is incorrect as it misidentifies Plane 2 as sagittal when it should be coronal. Choice D is incorrect as it incorrectly designates Plane 2 as coronal when it should be sagittal, leading to an inaccurate sequence of the primary body planes.
4. Where is keratin found?
- A. It is a protein-digesting enzyme released by the stomach.
- B. It is released in the neuromuscular junction.
- C. It is a protein found in the hypodermis.
- D. It is a protein found in hair.
Correct answer: D
Rationale: Keratin is a structural protein found in hair, skin, and nails, providing strength and protection. It forms the main structural component of hair, making choice D the correct answer. Choices A, B, and C are incorrect because keratin is not an enzyme released by the stomach, not released in the neuromuscular junction, and not found in the hypodermis. Remember that keratin is primarily associated with structural support in epithelial cells.
5. If a patient had a heart attack and tissue in the left ventricle lost blood flow, what would you most expect to happen?
- A. Blood would not flow from the lungs.
- B. Blood would back up in the legs.
- C. Blood would not be pumped to the body.
- D. Blood would not be oxygenated.
Correct answer: C
Rationale: The correct answer is C: 'Blood would not be pumped to the body.' When tissue in the left ventricle loses blood flow due to a heart attack, the ability of the left ventricle to pump oxygenated blood to the body is compromised. This can lead to serious consequences for the patient's overall health and organ function. Choices A, B, and D are incorrect because a heart attack affecting the left ventricle does not directly impact blood flow from the lungs, cause blood to back up in the legs, or prevent blood from being oxygenated. The primary concern is the compromised ability of the left ventricle to pump blood to the rest of the body, affecting overall circulation and organ perfusion.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access