ATI TEAS 7
ATI TEAS Science Questions
1. Which of the following types of stem cells can differentiate into any cell type, including forming an entire organism?
- A. Totipotent stem cells
- B. Multipotent stem cells
- C. Pluripotent stem cells
- D. Hematopoietic stem cells
Correct answer: A
Rationale: Totipotent stem cells possess the unique ability to differentiate into any cell type, including forming an entire organism. These cells have the highest potency level and can give rise to both embryonic and extraembryonic cell types, allowing them to develop into a complete organism. Multipotent stem cells (Choice B) can differentiate into a limited range of cell types within a specific tissue or organ. Pluripotent stem cells (Choice C) can differentiate into any cell type in the body except for those needed to support and develop a fetus. Hematopoietic stem cells (Choice D) are a type of multipotent stem cell that can differentiate into various blood cell types.
2. What is the term for the involuntary muscle contractions that move food through the digestive tract?
- A. Segmentation
- B. Peristalsis
- C. Chyme
- D. Emulsification
Correct answer: B
Rationale: Peristalsis is the correct term for the involuntary muscle contractions that move food through the digestive tract. These contractions help push food along the digestive system, facilitating digestion and absorption of nutrients. Segmentation, on the other hand, refers to the mixing and breaking down of food in the intestines, not the movement of food. Chyme is the semi-fluid mass of partially digested food in the stomach and small intestine, not the muscle contractions. Emulsification is the process of breaking down fat globules into smaller droplets to aid in digestion, not the movement of food through the digestive tract. Therefore, peristalsis is the most appropriate term for this function.
3. Which structure in the lungs is the site of gas exchange?
- A. Trachea
- B. Alveoli
- C. Bronchioles
- D. Diaphragm
Correct answer: B
Rationale: The correct answer is B: Alveoli. Alveoli are tiny air sacs in the lungs where gas exchange occurs. Oxygen from inhaled air diffuses into the bloodstream, while carbon dioxide from the blood is released into the alveoli to be exhaled. The trachea (Choice A) is the windpipe that carries air to and from the lungs, but it is not involved in gas exchange. Bronchioles (Choice C) are small air passages within the lungs that branch off from the bronchi, leading air to the alveoli but not directly involved in gas exchange. The diaphragm (Choice D) is a muscle below the lungs that helps in breathing by expanding and contracting the chest cavity, but it is not the site of gas exchange.
4. What are the two main types of nuclear decay, and what differentiates them?
- A. Fission and fusion, based on the size of the nucleus
- B. Alpha and beta decay, based on the emitted particle
- C. Spontaneous and induced decay, based on the trigger
- D. Isotope decay and chain reactions, based on the stability of the nucleus
Correct answer: B
Rationale: The correct answer is B. The two main types of nuclear decay are alpha and beta decay, which are differentiated based on the emitted particle. In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus, while in beta decay, a beta particle (either an electron or a positron) is emitted. These decay types are distinguished by the particles they emit, not by the size of the nucleus, trigger, or stability of the nucleus. Choices A, C, and D are incorrect because fission, fusion, spontaneous, induced, isotope decay, and chain reactions are different processes in nuclear physics and do not represent the two main types of nuclear decay based on emitted particles.
5. Which of the following compounds often contains a carboxyl group?
- A. Carbohydrates
- B. Glycolipids
- C. Amino Acids
- D. DNA
Correct answer: C
Rationale: The correct answer is C: Amino Acids. Amino acids, the building blocks of proteins, contain both an amine group and a carboxyl group. The carboxyl group (-COOH) is crucial for the structure and function of proteins as it participates in peptide bond formation. Carbohydrates and DNA do not typically contain carboxyl groups as a functional group. Glycolipids consist of a carbohydrate chain linked to a lipid, but they do not inherently contain a carboxyl group.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access