ATI TEAS 7
TEAS 7 science practice questions
1. Which of the following reagents can be used to convert a primary alcohol to an alkyl halide?
- A. HI
- B. H2O
- C. NaOH
- D. SOCl2
Correct answer: D
Rationale: SOCl2 (thionyl chloride) is commonly used to convert primary alcohols to alkyl halides through an SN2 mechanism. Thionyl chloride reacts with the alcohol to form an alkyl chloride. HI (hydroiodic acid) is typically used to convert alcohols to alkyl iodides specifically, not alkyl halides in general. H2O (water) and NaOH (sodium hydroxide) are not reagents used for converting alcohols to alkyl halides. Therefore, the correct answer is SOCl2 as it facilitates the conversion of primary alcohols to alkyl halides, unlike the other options provided.
2. What causes stretch marks?
- A. The epidermis layer becomes inflamed
- B. The dermis layer becomes inflamed
- C. The dermis layer tears due to rapid stretching
- D. Sebaceous glands become clogged
Correct answer: C
Rationale: Stretch marks occur when the dermis layer tears due to rapid stretching of the skin. This tearing leads to the appearance of stretch marks, which are often red or purple at first and then fade to a silvery-white color over time. Inflammation of the dermis or clogging of sebaceous glands are not directly related to the formation of stretch marks. Therefore, choices A, B, and D are incorrect as they do not describe the actual cause of stretch marks.
3. Which of the following chambers of the heart receives blood returning from the lungs during pulmonary circulation?
- A. left atrium
- B. right atrium
- C. left ventricle
- D. right ventricle
Correct answer: A
Rationale: The correct answer is A, the left atrium. During pulmonary circulation, oxygenated blood returns from the lungs to the heart and enters the left atrium through the pulmonary veins. The left atrium then contracts, pushing this oxygen-rich blood into the left ventricle. The left ventricle subsequently pumps this oxygenated blood out to the rest of the body through the aorta. Choices B, C, and D are incorrect because the right atrium receives deoxygenated blood from the body, the left ventricle receives oxygenated blood from the left atrium, and the right ventricle pumps deoxygenated blood to the lungs for oxygenation, respectively.
4. What describes a cell’s reaction to being placed in a hypertonic solution?
- A. The cell will shrink as water is pulled out of the cell to equalize the concentrations inside and outside of the cell.
- B. The cell will swell as water is pulled into the cell to equalize the concentrations inside and outside of the cell.
- C. The cell will remain the same size since the concentrations inside and outside the cell are equal to begin with.
- D. The pH inside the cell will drop in order to equalize the pH inside and outside the cell.
Correct answer: A
Rationale: A cell placed in a hypertonic solution has a higher solute concentration outside the cell compared to inside. This creates a concentration gradient that causes water to move out of the cell through osmosis to equalize the concentrations on both sides. As a result, the cell will shrink or undergo plasmolysis, as water is pulled out of the cell. Choice B is incorrect because a hypertonic solution causes water to move out of the cell, leading to shrinkage rather than swelling. Choice C is incorrect as a hypertonic solution results in a concentration gradient that leads to water leaving the cell, causing it to shrink. Choice D is incorrect because pH is not directly affected by being placed in a hypertonic solution; the change in solute concentration primarily impacts water movement.
5. What is the maximum volume of air that the lungs can hold after a full forced inhalation?
- A. Inspiratory capacity
- B. Tidal volume
- C. Total lung capacity
- D. Vital capacity
Correct answer: C
Rationale: Total lung capacity is the correct term for the maximum volume of air that the lungs can hold after a full forced inhalation. It represents the sum of all lung volumes, including tidal volume, inspiratory reserve volume, and expiratory reserve volume. Inspiratory capacity refers to the maximum volume of air inspired from the end-expiratory level. Tidal volume is the volume of air inspired or expired during normal breathing. Vital capacity is the maximum volume of air that can be exhaled after a maximum inhalation, not the total volume the lungs can hold.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access