ATI TEAS 7
TEAS Practice Test Science
1. What is the maximum volume of air that can be expelled from the lungs after maximum inhalation?
- A. Tidal volume
- B. Total lung capacity
- C. Ventilation rate
- D. Vital capacity
Correct answer: D
Rationale: The correct answer is D, Vital capacity. Vital capacity represents the maximum volume of air that can be expelled from the lungs after a maximum inhalation. Tidal volume (Choice A) is the volume of air inspired or expired during normal breathing at rest and is not the maximum capacity. Total lung capacity (Choice B) refers to the maximum volume of air the lungs can accommodate including the residual volume, not just the expelled air. Ventilation rate (Choice C) is the rate at which air is moved in and out of the lungs, not the maximum volume of air that can be expelled.
2. Which of the following joints is an example of a hinge joint?
- A. Hip joint
- B. Elbow joint
- C. Shoulder joint
- D. Knee joint
Correct answer: B
Rationale: The correct answer is B: Elbow joint. A hinge joint allows movement primarily in one plane, enabling bending and straightening actions. The elbow joint specifically functions as a hinge joint, facilitating the bending and straightening of the arm. The other options, such as the hip joint (A), shoulder joint (C), and knee joint (D), are not examples of hinge joints as they allow movement in multiple planes with more complex motions.
3. Connective tissue provides support and connects other tissues. What is the main component that gives connective tissue its strength?
- A. Collagen fibers
- B. Epithelial cells
- C. Nerve cells
- D. Blood cells
Correct answer: A
Rationale: Collagen fibers are the main component that gives connective tissue its strength. Collagen is a fibrous protein that provides structural support and tensile strength to connective tissues, allowing them to withstand stretching and tension. Epithelial cells, nerve cells, and blood cells are not the main components responsible for the strength of connective tissue. Epithelial cells are specialized for covering and lining surfaces, nerve cells transmit signals, and blood cells are involved in various functions like oxygen transport and immune response, but they do not provide the structural strength typical of collagen fibers in connective tissue.
4. What is the primary function of the cell membrane?
- A. To provide structural support for the cell
- B. To transport substances in and out of the cell
- C. To synthesize proteins and lipids
- D. To store genetic material
Correct answer: B
Rationale: The primary function of the cell membrane, also known as the plasma membrane, is to regulate the movement of substances in and out of the cell. It acts as a selectively permeable barrier, allowing specific molecules to pass through while blocking others. This role is crucial for maintaining the internal environment of the cell by enabling essential nutrients to enter and waste products to exit. While the cell membrane provides some structural support for the cell, its main function is substance transport. Protein and lipid synthesis predominantly occur in organelles like the endoplasmic reticulum and Golgi apparatus, and storing genetic material is the nucleus's responsibility. Therefore, choices C (To synthesize proteins and lipids) and D (To store genetic material) are incorrect as these functions are carried out by other cell organelles, not the cell membrane.
5. Why are isotopes of the same element chemically similar?
- A. They have the same number of protons.
- B. They have the same number of electrons.
- C. Their chemical properties are identical.
- D. They share the same electron configuration.
Correct answer: A
Rationale: Isotopes of the same element are chemically similar because they have the same number of protons. The number of protons in an atom determines its atomic number, which is the defining characteristic of an element. Since chemical reactions primarily involve interactions between the electrons of atoms, having the same number of protons means the atoms have the same basic chemical properties. While isotopes may differ in the number of neutrons, it is the number of protons that dictates the element's identity and chemical behavior. Therefore, choice A is correct because the number of protons directly influences an element's chemical properties, making isotopes of the same element chemically similar despite potentially having different numbers of neutrons. Choices B, C, and D are incorrect because isotopes of the same element can have different numbers of electrons, their chemical properties are not identical due to potential differences in neutron numbers, and although they may have similarities in electron configurations, it is the number of protons that is the key factor determining chemical behavior.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access