ATI TEAS 7
ati teas 7 science
1. What is the fundamental unit of the nervous system?
- A. Neuron
- B. Nerve
- C. Ganglion
- D. Neuroglia
Correct answer: A
Rationale: The correct answer is A: Neuron. Neurons are the fundamental building blocks of the nervous system. These specialized cells play a crucial role in transmitting information through electrical and chemical signals. While nerves are comprised of bundles of neurons and ganglia consist of clusters of nerve cell bodies located outside the central nervous system, neuroglia serve as support cells for neurons. Neurons are specifically responsible for processing and transmitting information within the nervous system, making them the essential unit of this complex system. Choices B, C, and D are incorrect as nerves are bundles of neurons, ganglia are clusters of nerve cell bodies outside the central nervous system, and neuroglia are support cells for neurons, not the fundamental units responsible for information processing and transmission.
2. Where does the digestion of food start?
- A. Esophagus
- B. Stomach
- C. Small intestine
- D. Mouth
Correct answer: D
Rationale: The correct answer is the mouth. Digestion begins in the mouth where mechanical breakdown occurs through chewing, and chemical breakdown begins with saliva. Enzymes in saliva start breaking down carbohydrates, initiating the digestion process. The esophagus is responsible for transporting food from the mouth to the stomach and does not play a role in the digestion process. The stomach continues the digestion process after the food leaves the mouth. The small intestine is primarily responsible for absorbing nutrients from the digested food, rather than being the initial site of digestion.
3. Which muscles play a significant role in the process of forced exhalation by contracting to reduce the thoracic cavity volume?
- A. Diaphragm
- B. External intercostal muscles
- C. Internal intercostal muscles
- D. Abdominal muscles
Correct answer: D
Rationale: The abdominal muscles play a significant role in forced exhalation by contracting to reduce the thoracic cavity volume. When these muscles contract, the pressure within the thoracic cavity increases, assisting in the expulsion of air from the lungs. This action helps to compress the abdomen and push the diaphragm upwards, further decreasing the volume of the thoracic cavity and aiding in the exhalation process. The diaphragm (Choice A) is mainly involved in inhalation by contracting and moving downward to increase thoracic cavity volume. External intercostal muscles (Choice B) and internal intercostal muscles (Choice C) are primarily involved in the process of inhalation by expanding the thoracic cavity during normal breathing, rather than forced exhalation.
4. An object is thrown upwards and reaches a maximum height. Which of the following statements is TRUE about its velocity and acceleration at the peak?
- A. Velocity is zero and acceleration is maximum upwards.
- B. Velocity is maximum and acceleration is zero.
- C. Velocity is maximum and acceleration is maximum upwards.
- D. Velocity is zero and acceleration is maximum downwards.
Correct answer: A
Rationale: At the peak of the object's motion, its velocity is zero because it momentarily stops before changing direction and starts to fall back down. The acceleration at the peak is maximum upwards as gravity is acting against the object's motion, slowing it down until it stops momentarily. Choice A is correct because at the peak, the object's velocity is zero, and the acceleration is maximum upwards. Choice B is incorrect because the velocity is not maximum but zero at the peak. Choice C is incorrect as both velocity and acceleration are not maximum at the peak. Choice D is incorrect as the acceleration at the peak is upwards, opposing the object's motion, not downwards.
5. Salts like sodium iodide (NaI) and potassium chloride (KCl) use what type of bond?
- A. Ionic bonds
- B. Disulfide bridges
- C. Covalent bonds
- D. London dispersion forces
Correct answer: A
Rationale: Salts like sodium iodide (NaI) and potassium chloride (KCl) use ionic bonds. Ionic bonds are formed between atoms with significantly different electronegativities, leading to the transfer of electrons from one atom to another. In the case of NaI and KCl, sodium (Na) and potassium (K) are metals that easily lose electrons to become positively charged ions, while iodide (I) and chloride (Cl) are nonmetals that readily accept electrons to become negatively charged ions. The attraction between the oppositely charged ions forms the ionic bond, which holds the compound together in a lattice structure. Disulfide bridges (option B) are covalent bonds formed between sulfur atoms in proteins, not in salts. Covalent bonds (option C) involve the sharing of electrons between atoms and are typically seen in molecules, not ionic compounds like salts. London dispersion forces (option D) are weak intermolecular forces that occur between all types of molecules but are not the primary type of bond in salts like NaI and KCl.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access