which of the following is a true statement about dominance in genetics
Logo

Nursing Elites

ATI TEAS 7

TEAS 7 Science Practice Test

1. Which of the following is a true statement about dominance in genetics?

Correct answer: B

Rationale: In genetics, dominance refers to the relationship between two different alleles of a gene where one allele (dominant) masks the expression of another allele (recessive) in an individual's phenotype. The correct statement about dominance is that a dominant allele will always be expressed in the phenotype, even in the presence of a recessive allele. This means that if an individual has at least one dominant allele for a particular trait, that trait will be expressed. Choice A is incorrect because not all genes follow Mendel’s law of dominance; exceptions do exist. Choice C is incorrect because when two dominant alleles are present, only one will be expressed due to complete dominance. Choice D is incorrect as there can be more than three alleles for a gene, and not all genes have three or more alleles.

2. Ectopic pregnancy is a serious condition that occurs when a fertilized egg implants outside the uterus. What is the most common location for an ectopic pregnancy?

Correct answer: B

Rationale: The most common location for an ectopic pregnancy is the fallopian tube. This occurs when the fertilized egg implants and grows outside the uterus, typically in the fallopian tube. Ectopic pregnancies in other locations such as the ovary, cervix, or vagina are much rarer. The fallopian tube is the correct answer because it is the site where the fertilized egg may get stuck during its journey to the uterus, leading to implantation and growth outside the uterus. The ovary is not a common site for ectopic pregnancy, and implantation there can be life-threatening due to the risk of severe bleeding. The cervix and vagina are not typical sites for implantation of a fertilized egg, making them less likely locations for an ectopic pregnancy.

3. Photons, the basic unit of light, are:

Correct answer: B

Rationale: Photons are not charged particles; they are packets of energy that exhibit wave-particle duality, meaning they can behave as both particles and waves. While photons are part of the electromagnetic spectrum, they are not electromagnetic waves themselves but rather discrete energy packets. They are not always absorbed by matter; they can be reflected, transmitted, or scattered.

4. Which types of glial cells are in the PNS?

Correct answer: A

Rationale: The correct answer is A, which includes Schwann cells and satellite cells as the types of glial cells found in the peripheral nervous system. Schwann cells support neurons and myelinate axons, while satellite cells provide structural support and regulate the microenvironment around neurons in the PNS. Options B, C, and D are incorrect as they refer to glial cell types that are typically found in the central nervous system, not the peripheral nervous system. Astrocytes and oligodendrocytes are primarily located in the CNS, where they perform functions such as providing structural support and forming the blood-brain barrier. Microglia are immune cells found in the CNS responsible for immune defense and maintenance of neural environment, while ependymal cells line the cerebral ventricles and the central canal of the spinal cord, contributing to the production and circulation of cerebrospinal fluid.

5. What happens when an atom loses an electron?

Correct answer: B

Rationale: When an atom loses an electron, it gains a positive charge and becomes an ion. This occurs because the number of protons in the atom exceeds the number of electrons, leading to a positive charge. Therefore, the atom undergoes a transformation into an ion by losing an electron. Choice A is incorrect because losing an electron does not result in the formation of a molecule, as molecules are made up of bonded atoms. Choice C is incorrect because losing an electron does not change the fundamental identity of the atom; it only changes its charge. Choice D is incorrect because losing an electron causes the atom to become positively charged, altering its neutrality.

Similar Questions

What is the building block of RNA?
What is the independent variable in this experiment?
What impact would the removal of a keystone species have in an ecosystem?
What is the main function of the nervous system?
What type of genetic testing can reveal an individual's susceptibility to certain diseases?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses