ATI TEAS 7
TEAS 7 science practice questions
1. Which hormone, produced by the thyroid gland, regulates calcium levels in the blood by enhancing calcium absorption in the intestines and reducing calcium loss in the kidneys?
- A. Calcitonin
- B. Parathyroid hormone (PTH)
- C. Thyroxine
- D. Insulin
Correct answer: A
Rationale: Calcitonin is the hormone produced by the thyroid gland that regulates calcium levels in the blood. It enhances calcium absorption in the intestines and reduces calcium loss in the kidneys. Parathyroid hormone (PTH) operates oppositely to calcitonin by increasing calcium levels in the blood. Thyroxine is a thyroid gland hormone that primarily regulates metabolism, not calcium levels. Insulin, produced by the pancreas, is responsible for controlling blood sugar levels, not calcium levels. Therefore, the correct answer is Calcitonin as it specifically targets calcium regulation in the body.
2. Which structure in the female reproductive system is responsible for producing eggs (ova)?
- A. Fallopian tubes
- B. Ovaries
- C. Uterus
- D. Vagina
Correct answer: B
Rationale: The correct answer is the ovaries. Ovaries are the primary reproductive organs in females responsible for producing eggs (ova) through a process known as oogenesis. Ova are released from the ovaries during ovulation and can be fertilized by sperm in the fallopian tubes. The uterus is where a fertilized egg implants and develops into a fetus, while the vagina serves as the birth canal and a site for sexual intercourse. Fallopian tubes are responsible for transporting eggs from the ovaries to the uterus and are the site where fertilization typically occurs. Therefore, while important for the reproductive process, the fallopian tubes do not produce eggs.
3. What property of a wave represents the distance between two successive identical points on a wave?
- A. Wavelength
- B. Amplitude
- C. Frequency
- D. Period
Correct answer: A
Rationale: The wavelength of a wave represents the distance between two successive identical points on a wave, such as two crests or two troughs. It is typically measured in meters and is a fundamental characteristic of a wave, influencing its properties and behavior. Wavelength is crucial in wave physics, affecting phenomena like interference, diffraction, and the wave's speed in a medium. Amplitude refers to the maximum displacement of a wave from its rest position, frequency is the number of complete oscillations a wave makes in a given time, and period is the time it takes for a wave to complete one full cycle. These properties are different from wavelength and serve distinct purposes in describing waves.
4. What type of inheritance pattern results in a 3:1 ratio of dominant to recessive phenotypes in the F2 generation?
- A. Incomplete dominance
- B. Codominance
- C. Sex-linked inheritance
- D. Autosomal dominant inheritance
Correct answer: D
Rationale: Autosomal dominant inheritance results in a 3:1 ratio of dominant to recessive phenotypes in the F2 generation. This inheritance pattern occurs when a single copy of the dominant allele is enough to express the dominant phenotype. A) Incomplete dominance: In incomplete dominance, the heterozygous phenotype is a blend of the two homozygous phenotypes, and it does not lead to a 3:1 ratio of dominant to recessive phenotypes in the F2 generation. B) Codominance: In codominance, both alleles are fully expressed in the heterozygous phenotype, but this pattern also does not result in a 3:1 ratio of dominant to recessive phenotypes in the F2 generation. C) Sex-linked inheritance: Sex-linked inheritance involves genes located on the sex chromosomes and does not typically lead to a 3:1 ratio of dominant to recessive phenotypes in the F2 generation.
5. Why are elements in Group 18 (Noble gases) generally unreactive?
- A. They have high atomic masses
- B. They lack valence electrons
- C. Their outermost electron shells are completely filled
- D. They exist as single atoms, not molecules
Correct answer: C
Rationale: Elements in Group 18 (Noble gases) are generally unreactive because their outermost electron shells are completely filled. This results in high stability and low reactivity since they have achieved a full valence shell configuration, making them less likely to gain, lose, or share electrons with other atoms. The full valence shell configuration leads to a minimal tendency for these elements to form chemical bonds, hence exhibiting low reactivity. Choices A, B, and D are incorrect because high atomic masses, lack of valence electrons, and existing as single atoms do not directly contribute to the unreactivity of noble gases. It is the full valence shell configuration that is the primary reason for their inert nature.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access