ATI TEAS 7
Science TEAS Practice Test
1. Which blood component is responsible for the production of antibodies?
- A. Platelets
- B. Red blood cells
- C. White blood cells
- D. Plasma cells
Correct answer: C
Rationale: White blood cells, specifically B lymphocytes or B cells, are responsible for producing antibodies as part of the immune response. When the body encounters foreign substances (antigens), B cells are activated to differentiate into plasma cells, which then produce antibodies to target and neutralize the antigens. Platelets are involved in blood clotting and not in antibody production. Red blood cells are primarily responsible for carrying oxygen in the blood and do not produce antibodies. Plasma cells are actually differentiated B cells that produce antibodies, but the question asks for the blood component responsible for the production of antibodies, which is the white blood cells.
2. Which part of the brain is responsible for voluntary muscle movements?
- A. Medulla oblongata
- B. Cerebrum
- C. Hypothalamus
- D. Thalamus
Correct answer: B
Rationale: The question inquires about the brain region responsible for voluntary muscle movements. The correct answer is the Cerebrum. The cerebrum is the main part of the brain involved in voluntary muscle control and motor coordination. The Medulla oblongata is primarily responsible for regulating vital functions like breathing and heart rate, not voluntary muscle movements. The Hypothalamus plays a role in regulating body temperature, thirst, hunger, and other homeostatic processes. The Thalamus serves as a relay station for sensory information but is not directly responsible for voluntary muscle movements.
3. What are the three layers of the skin?
- A. Epidermis, dermis, subdermis
- B. Epidermis, dermis, hypodermis
- C. Dermis, subdermis, hypodermis
- D. Epidermis, dermis, adipose layer
Correct answer: B
Rationale: The correct answer is B: Epidermis, dermis, hypodermis. The three layers of the skin are the epidermis (outer layer), dermis (middle layer), and hypodermis (inner layer of fat and connective tissue). The hypodermis is also known as the subcutaneous tissue and is primarily composed of adipose (fat) tissue, providing insulation and padding to the body. Choice A is incorrect as 'subdermis' is not a recognized layer of the skin. Choice C is incorrect as 'dermis' is the middle layer, not the outer layer. Choice D is incorrect as the layer below the dermis is the hypodermis, not specifically an 'adipose layer.'
4. What is the formula to calculate gravitational potential energy near the Earth's surface?
- A. Potential Energy = Mass × Acceleration
- B. Potential Energy = Force × Distance
- C. Potential Energy = Mass × Height × Gravity
- D. Potential Energy = Mass × Acceleration due to gravity × Height
Correct answer: D
Rationale: The correct formula to calculate gravitational potential energy near the Earth's surface is Potential Energy = Mass × Acceleration due to gravity × Height. This formula considers the mass of the object, the specific acceleration due to gravity near the Earth's surface (approximately 9.81 m/s^2), and the vertical distance from the reference point. Choice A is incorrect as it does not include height in the formula. Choice B is incorrect as it involves force instead of acceleration due to gravity. Choice C is incorrect as it multiplies mass, height, and gravity, missing the actual acceleration due to gravity term.
5. What happens to the potential energy of an object when it is lifted higher above the ground?
- A. Potential energy decreases
- B. Potential energy remains the same
- C. Potential energy increases
- D. Potential energy becomes zero
Correct answer: C
Rationale: When an object is lifted higher above the ground, its potential energy increases. This is because the higher the object is lifted, the greater its potential energy due to the increased distance from the ground. The formula for gravitational potential energy is PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height above the reference point. Therefore, as the height (h) increases, the potential energy (PE) also increases, making choice C the correct answer. Choices A, B, and D are incorrect because when an object is lifted higher, it gains potential energy rather than losing it, keeping it the same, or becoming zero. Thus, the correct answer is that the potential energy of an object increases when it is lifted higher above the ground.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access