ATI TEAS 7
TEAS 7 science practice questions
1. Which type of joint allows for the most movement?
- A. Ball-and-socket joint (shoulder)
- B. Hinge joint (elbow)
- C. Fibrocartilaginous joint (wrists)
- D. Suture joint (skull)
Correct answer: A
Rationale: A ball-and-socket joint allows for the most movement among the options provided. This type of joint is characterized by a rounded end of one bone fitting into a cup-like socket of another bone, allowing for a wide range of motion in multiple directions. The shoulder joint is a prime example of a ball-and-socket joint, enabling movements such as flexion, extension, abduction, adduction, and rotation. In contrast, a hinge joint (option B) like the elbow primarily allows for movement in one plane (flexion and extension). Fibrocartilaginous joints (option C) like the wrists have limited movement due to the presence of cartilage between the bones. Suture joints (option D) in the skull are immovable joints that provide structural support but do not allow for significant movement.
2. Which type of wave requires a medium to travel through?
- A. Electromagnetic waves
- B. Mechanical waves
- C. Sound waves
- D. Both A and C
Correct answer: B
Rationale: Mechanical waves, unlike electromagnetic waves, require a medium (such as air, water, or solids) to propagate. Sound waves are a specific type of mechanical wave that necessitates a medium, like air or water, for transmission. Electromagnetic waves, on the other hand, can travel through a vacuum as they do not rely on a medium for propagation. Choice A (Electromagnetic waves) is incorrect since they do not require a medium to travel. Choice C (Sound waves) is partially correct in that it is a type of mechanical wave that needs a medium but is not the only type. Choice D (Both A and C) is incorrect because electromagnetic waves do not require a medium, only mechanical waves like sound waves do.
3. What is the formula to calculate work?
- A. Work = Force × Distance
- B. Work = Mass × Velocity
- C. Work = Power × Time
- D. Work = Energy ÷ Time
Correct answer: A
Rationale: Work is defined as the product of the force applied to an object and the distance over which the force is applied. The formula to calculate work is represented by Work = Force × Distance, where force is the applied force on an object and distance is the displacement over which the force is applied. Therefore, the correct formula to calculate work is Work = Force × Distance. Choice B, 'Work = Mass × Velocity,' is incorrect because work involves force and distance, not mass and velocity. Choice C, 'Work = Power × Time,' is incorrect because work is not directly calculated using power and time. Choice D, 'Work = Energy ÷ Time,' is incorrect because work is not typically calculated by dividing energy by time; rather, it involves the product of force and distance.
4. What is the medical term for a urinary tract infection (UTI)?
- A. Nephritis
- B. Cystitis
- C. Urethritis
- D. All of the above
Correct answer: B
Rationale: The medical term specifically used to refer to a urinary tract infection (UTI) that affects the bladder is cystitis. Nephritis refers to inflammation of the kidneys, and urethritis refers to inflammation of the urethra. As such, cystitis is the correct term for a UTI, making choice B the right answer. Choices A, C, and D are incorrect because they refer to different conditions affecting the urinary system.
5. What is the maximum volume of air that the lungs can hold after a full forced inhalation?
- A. Inspiratory capacity
- B. Tidal volume
- C. Total lung capacity
- D. Vital capacity
Correct answer: C
Rationale: Total lung capacity is the correct term for the maximum volume of air that the lungs can hold after a full forced inhalation. It represents the sum of all lung volumes, including tidal volume, inspiratory reserve volume, and expiratory reserve volume. Inspiratory capacity refers to the maximum volume of air inspired from the end-expiratory level. Tidal volume is the volume of air inspired or expired during normal breathing. Vital capacity is the maximum volume of air that can be exhaled after a maximum inhalation, not the total volume the lungs can hold.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access