what type of glial cells are in the cns
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Science Practice Test

1. Which types of glial cells are found in the CNS?

Correct answer: B

Rationale: The correct answer is B. Glial cells in the CNS include astrocytes, microglia, ependymal cells, and oligodendrocytes. Schwann cells and satellite cells are found in the PNS. Astrocytes are the most abundant type of glial cells and are involved in nutrient support, repair, and maintenance of the extracellular environment. Microglia are the resident immune cells of the CNS, playing a role in immune defense. Ependymal cells line the ventricles of the brain and the central canal of the spinal cord, contributing to the production and circulation of cerebrospinal fluid. Oligodendrocytes are responsible for producing myelin, which insulates axons in the CNS. Understanding the specific functions of each type of glial cell is essential in grasping the complexity of the central nervous system's support and protective mechanisms.

2. What is the main purpose of biological classification?

Correct answer: B

Rationale: Biological classification, also known as taxonomy, is the science of categorizing and organizing living organisms based on shared characteristics. The main purpose of biological classification is not to create a rigid and unchanging system (option A) or to simplify nature into neat and tidy categories (option C). Instead, it aims to help us understand the diversity of life on Earth and how different organisms are related to each other. By classifying organisms into groups based on their evolutionary relationships, we can gain insights into the interconnectedness of life and better appreciate the complexity and beauty of the natural world. Assigning organisms to specific ecological niches (option D) is more related to ecological studies rather than biological classification.

3. How can a single gene mutation lead to multiple phenotypes depending on the organism?

Correct answer: A

Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.

4. Which element is used in fire extinguishers to smother flames by displacing oxygen?

Correct answer: B

Rationale: Carbon dioxide is the correct answer. It is used in fire extinguishers because it displaces oxygen, which is necessary for combustion. When carbon dioxide is released onto a fire, it reduces the oxygen concentration around the flames, effectively smothering the fire. This disruption of oxygen availability interrupts the chemical reaction that sustains the fire. Nitrogen (Choice A), helium (Choice C), and argon (Choice D) are not typically used in fire extinguishers for smothering flames by displacing oxygen. Nitrogen is an inert gas that can displace oxygen but is not as effective as carbon dioxide in fire suppression.

5. Which of the following Mendelian laws describes how pairs of alleles within genes separate and recombine independently from other genes?

Correct answer: C

Rationale: The law of independent assortment describes how alleles of different genes segregate independently during gamete formation. This means that different gene pairs are passed on to offspring separately from one another, allowing for various combinations of traits. Gregor Mendel discovered this law, along with the law of segregation and the law of dominance, through his experiments with pea plants. The law of segregation (choice A) refers to how alleles of a gene separate during gamete formation, while the law of dominance (choice B) states that one allele can mask the presence of another in a heterozygous individual. The 'law of predictive traits' (choice D) is not a recognized Mendelian law and does not accurately describe the principles of genetic inheritance.

Similar Questions

In nuclear physics, the term 'barn' is a unit commonly used to quantify:
What is the periodic law?
Which of the following colligative properties refers to the elevation of the boiling point of a solution?
Which of the following is NOT a property of a catalyst?
What is the primary composition of the stratum corneum, the outermost layer of the epidermis?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses