ATI TEAS 7
TEAS 7 science quizlet
1. What is the term for the process of exchanging gases (oxygen and carbon dioxide) between the blood and the tissues?
- A. Inhalation
- B. Exhalation
- C. External respiration
- D. Internal respiration
Correct answer: C
Rationale: External respiration is the correct term for the process of exchanging gases (oxygen and carbon dioxide) between the blood and the tissues. It specifically refers to the exchange of gases that occurs in the lungs, where oxygen is absorbed into the bloodstream and carbon dioxide is released from the bloodstream to be exhaled. Inhalation and exhalation, choices A and B, are phases of the breathing process that involve the intake and expulsion of air into and out of the lungs, respectively. Internal respiration, choice D, is the process of gas exchange that happens at the cellular level between the blood and body tissues, not between the blood and the lungs or tissues as in external respiration. Therefore, external respiration is the most appropriate term for the described gas exchange process in the question.
2. Which part of the brain is responsible for coordinating various sensory inputs, regulating sleep, and maintaining wakefulness?
- A. Cerebrum
- B. Hypothalamus
- C. Medulla oblongata
- D. Reticular formation
Correct answer: D
Rationale: The reticular formation is a network of neurons located in the brainstem that plays a crucial role in regulating sleep-wake cycles, coordinating various sensory inputs, and maintaining wakefulness. It acts as a filter for incoming sensory information and helps in directing attention to important stimuli. The other options, the cerebrum, hypothalamus, and medulla oblongata, are important structures in the brain but are not primarily responsible for the specific functions mentioned in the question. The cerebrum is mainly involved in higher brain functions such as thinking and voluntary movements. The hypothalamus is responsible for regulating body temperature, hunger, and thirst, among other functions. The medulla oblongata is essential for controlling vital autonomic functions like breathing and heart rate.
3. What is the most common cause of aseptic meningitis?
- A. Bacteria
- B. Viruses
- C. Fungi
- D. Parasites
Correct answer: B
Rationale: Aseptic meningitis is typically caused by viral infections, such as enteroviruses (e.g., coxsackievirus, echovirus), herpes simplex virus, varicella-zoster virus, and others. These viruses can infect the meninges, leading to inflammation and symptoms of meningitis without the presence of bacteria. While bacterial meningitis is a serious and life-threatening condition, aseptic meningitis caused by viruses is usually less severe and has a better prognosis. Fungi and parasites are less common causes of meningitis compared to bacteria and viruses.
4. Which of the following is a special property of water?
- A. Water does not easily flow through phospholipid bilayers.
- B. A water molecule's oxygen atom does not allow fish to breathe.
- C. Water is highly cohesive, which explains its high melting point.
- D. Water cannot self-hydrolyze and decompose into hydrogen and oxygen.
Correct answer: C
Rationale: Water is highly cohesive, meaning it is attracted to itself due to its hydrogen bonding properties. This cohesion is the reason why water has a high melting point compared to other liquids of similar molecular weight. It is crucial for the existence of life on Earth as it allows water to remain a liquid within a wide range of temperatures, providing a stable environment for biological processes to occur. Choices A, B, and D are incorrect. Water's cohesive property does not directly relate to its ability to flow through phospholipid bilayers, assist fish in breathing, or self-hydrolyze into hydrogen and oxygen.
5. How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access