ATI TEAS 7
ati teas 7 science
1. What is the role of transfer RNA (tRNA) in protein synthesis?
- A. Transcribes DNA into mRNA
- B. Decodes the genetic code on mRNA
- C. Carries specific amino acids to the ribosomes
- D. Modifies the structure of proteins
Correct answer: C
Rationale: A) Transcribes DNA into mRNA: This is the function of RNA polymerase, not transfer RNA (tRNA). tRNA is involved in protein synthesis, not transcription. B) Decodes the genetic code on mRNA: This is the function of tRNA during translation. tRNA molecules carry specific amino acids and recognize the codons on mRNA, ensuring the correct amino acid is added to the growing polypeptide chain. C) Carries specific amino acids to the ribosomes: This is the primary role of tRNA in protein synthesis. Each tRNA molecule is specific for a particular amino acid and carries it to the ribosome, where it is added to the growing protein chain. D) Modifies the structure of proteins: This is not a function of tRNA. Protein modification can occur after translation is complete and involves other cellular processes and molecules.
2. Which organelle is responsible for the final stages of protein modification and packaging for secretion in animal cells?
- A. Rough endoplasmic reticulum (RER)
- B. Smooth endoplasmic reticulum (SER)
- C. Ribosomes
- D. Golgi apparatus
Correct answer: D
Rationale: The Golgi apparatus is responsible for the final stages of protein modification and packaging for secretion in animal cells. After proteins are synthesized in the rough endoplasmic reticulum (RER), they are transported to the Golgi apparatus for further processing, sorting, and packaging before being sent to their final destination within or outside the cell. The smooth endoplasmic reticulum (SER) is mainly involved in lipid metabolism and detoxification processes, not protein modification. Ribosomes are the cellular organelles responsible for protein synthesis, not the final stages of protein modification and packaging for secretion, which is the role of the Golgi apparatus.
3. Water is capable of dissolving many substances that organisms need to carry out life functions. Which of the properties of water listed below is responsible for its ability to dissolve important nutrients like ionic salt compounds?
- A. adhesion
- B. cohesion
- C. high specific heat
- D. high polarity
Correct answer: D
Rationale: The property of water that is responsible for its ability to dissolve important nutrients like ionic salt compounds is its high polarity. Water is a polar molecule with a positive and negative end, which allows it to attract and surround individual ions from salt compounds, causing them to dissociate and dissolve in water. This property makes water an excellent solvent for various substances necessary for life functions. Adhesion refers to the ability of water molecules to stick to other substances, cohesion is the attraction between water molecules themselves, and high specific heat is the amount of heat energy required to raise the temperature of water. While these properties are important characteristics of water, they are not directly responsible for its ability to dissolve ionic salt compounds.
4. What is the primary function of the CRISPR-Cas9 system in gene editing?
- A. To amplify specific DNA sequences.
- B. To cut DNA at specific locations.
- C. To deliver genes into cells.
- D. To sequence entire genomes.
Correct answer: B
Rationale: The CRISPR-Cas9 system is a powerful tool used in gene editing to precisely target and cut DNA at specific locations within the genome. This system consists of a guide RNA that directs the Cas9 enzyme to the desired DNA sequence, where it creates a double-strand break. This break can then be repaired by the cell's natural DNA repair mechanisms, allowing for the introduction of specific genetic modifications. Options A, C, and D are incorrect as they do not accurately describe the primary function of the CRISPR-Cas9 system in gene editing. Amplifying DNA sequences, delivering genes into cells, and sequencing entire genomes are not the main functions of the CRISPR-Cas9 system, which is primarily focused on precise DNA cutting for targeted genetic modifications.
5. What happens to the density of a substance if its mass increases while its volume remains constant?
- A. Density increases
- B. Density decreases
- C. Density remains constant
- D. Density becomes zero
Correct answer: A
Rationale: When the mass of a substance increases while its volume remains constant, the density, which is calculated by dividing mass by volume, will increase. This is because with a higher mass and the volume staying the same, the ratio of mass to volume (density) will be greater, resulting in an overall increase in density. Choice B, 'Density decreases,' is incorrect because an increase in mass with constant volume leads to a higher density. Choice C, 'Density remains constant,' is incorrect as an increase in mass will cause the density to increase. Choice D, 'Density becomes zero,' is incorrect because even with an increase in mass, as long as volume remains constant, density will not reach zero; it will increase instead.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access