ATI TEAS 7
TEAS 7 practice test free science
1. What is the process by which muscles convert chemical energy (ATP) into mechanical energy (movement)?
- A. Photosynthesis
- B. Cellular respiration
- C. Muscle contraction
- D. The sliding filament theory
Correct answer: C
Rationale: Muscle contraction is the correct answer. It is the process by which muscles convert chemical energy (ATP) into mechanical energy (movement). During muscle contraction, the sliding filament theory explains how actin and myosin filaments slide past each other, causing muscle fibers to shorten and generate force. Photosynthesis (option A) is the process by which plants convert light energy into chemical energy. Cellular respiration (option B) is the process by which cells generate ATP from glucose and oxygen. The sliding filament theory (option D) is a detailed explanation of the molecular events that occur during muscle contraction but is not the overall process of converting energy into movement; it focuses on the mechanism within the process of muscle contraction.
2. Salts like sodium iodide (NaI) and potassium chloride (KCl) use what type of bond?
- A. Ionic bonds
- B. Disulfide bridges
- C. Covalent bonds
- D. London dispersion forces
Correct answer: A
Rationale: Salts like sodium iodide (NaI) and potassium chloride (KCl) use ionic bonds. Ionic bonds are formed between atoms with significantly different electronegativities, leading to the transfer of electrons from one atom to another. In the case of NaI and KCl, sodium (Na) and potassium (K) are metals that easily lose electrons to become positively charged ions, while iodide (I) and chloride (Cl) are nonmetals that readily accept electrons to become negatively charged ions. The attraction between the oppositely charged ions forms the ionic bond, which holds the compound together in a lattice structure. Disulfide bridges (option B) are covalent bonds formed between sulfur atoms in proteins, not in salts. Covalent bonds (option C) involve the sharing of electrons between atoms and are typically seen in molecules, not ionic compounds like salts. London dispersion forces (option D) are weak intermolecular forces that occur between all types of molecules but are not the primary type of bond in salts like NaI and KCl.
3. In the K-capture process, a type of electron capture, from which electron shell does the electron get captured?
- A. The outermost s-orbital
- B. An inner p-orbital
- C. An inner d-orbital
- D. Any available electron shell
Correct answer: B
Rationale: The K-capture process involves the capture of an electron from the innermost electron shell, known as the K-shell. The K-shell comprises s and p orbitals. During the K-capture process, an electron is specifically captured from an inner p-orbital within the K-shell. Choices A, C, and D are incorrect because K-capture involves capturing an electron from the innermost shell (K-shell) which consists of s and p orbitals, not the outermost s-orbital, inner d-orbital, or any available electron shell.
4. Which type of bond involves the complete transfer of electrons between atoms?
- A. Covalent bond
- B. Ionic bond
- C. Metallic bond
- D. Hydrogen bond
Correct answer: B
Rationale: The correct answer is B, Ionic bond. Ionic bond involves the complete transfer of electrons from one atom to another, resulting in the formation of cations and anions. This transfer leads to the creation of strong electrostatic attraction between the oppositely charged ions. Covalent bonds, on the other hand, involve the sharing of electrons between atoms to achieve stability. Metallic bonds are formed in metals, where a sea of delocalized electrons surrounds positively charged metal ions, contributing to the metal's properties. Hydrogen bonds are intermolecular forces that occur between a hydrogen atom and a highly electronegative atom like oxygen or nitrogen, not involving the complete transfer of electrons.
5. What is the difference between emphysema and chronic bronchitis, both chronic obstructive pulmonary diseases (COPD)?
- A. Emphysema damages alveoli, while chronic bronchitis inflames airways.
- B. Emphysema causes coughing, while chronic bronchitis leads to shortness of breath.
- C. Emphysema is more reversible than chronic bronchitis.
- D. Emphysema affects only smokers, while chronic bronchitis can occur in non-smokers.
Correct answer: A
Rationale: Emphysema is characterized by the destruction of alveoli in the lungs, leading to decreased surface area for gas exchange. Chronic bronchitis, on the other hand, involves inflammation and narrowing of the airways, leading to excessive mucus production and coughing. Therefore, the correct difference between emphysema and chronic bronchitis is that emphysema damages the alveoli, while chronic bronchitis inflames the airways. Choice B is incorrect because chronic bronchitis is associated with coughing, not emphysema. Choice C is incorrect as chronic bronchitis is typically less reversible compared to emphysema. Choice D is incorrect as both emphysema and chronic bronchitis are commonly seen in smokers, but chronic bronchitis can also occur in non-smokers due to other factors such as air pollution or genetic predisposition.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access