ATI TEAS 7
Mometrix TEAS 7 science practice test
1. What is the name for the flexible connection between bones at the wrist or ankle?
- A. Ligament
- B. Tendon
- C. Fascia
- D. Synovial joint
Correct answer: A
Rationale: The correct answer is A: Ligament. Ligaments are tough bands of tissue that connect bones to other bones at joints, providing stability and support. In the case of the wrist or ankle, ligaments play a crucial role in maintaining the structural integrity and allowing for proper movement of these joints. Tendons (option B) connect muscles to bones, not bones to bones. Fascia (option C) is a connective tissue that surrounds muscles and other structures, not connecting bones at joints. A synovial joint (option D) is a type of joint that allows for movement between bones, but it is not the flexible connection between bones at the wrist or ankle.
2. What is the term for a solution that has a lower concentration of solute compared to another solution?
- A. Saturated solution
- B. Unsaturated solution
- C. Dilute solution
- D. Concentrated solution
Correct answer: B
Rationale: An unsaturated solution is the term used for a solution that has a lower concentration of solute compared to another solution. In an unsaturated solution, more solute could still be dissolved. The other options are incorrect. A saturated solution (A) contains the maximum amount of solute that can be dissolved and is in equilibrium with undissolved solute. A dilute solution (C) has a low concentration of solute, but it does not imply a comparison to another solution. A concentrated solution (D) has a high concentration of solute compared to the solvent, which is opposite to what is described in the question.
3. How many neutrons and electrons could a negative ion of sulfur have?
- A. 16 neutrons, 16 electrons
- B. 16 neutrons, 17 electrons
- C. 17 neutrons, 16 electrons
- D. 17 neutrons, 17 electrons
Correct answer: B
Rationale: A negative ion of sulfur would have 16 protons and 17 electrons since it gains one electron. The number of neutrons in an ion does not change, so the neutrons would remain at 16. Therefore, the correct answer is 16 neutrons and 17 electrons, which corresponds to choice B. Choice A is incorrect as it does not account for the extra electron gained by the negative ion. Choices C and D are incorrect because they propose a change in the number of neutrons, which is not affected by the ionization process.
4. Balance the chemical equation: C4H10 + O2 → CO2 + H2O. What is the coefficient for oxygen?
- A. 5
- B. 6
- C. 7
- D. 8
Correct answer: B
Rationale: To balance the chemical equation, we need to ensure that the number of each type of atom is the same on both sides of the equation. In this case, there are 10 oxygen atoms on the right side (5 in CO2 and 5 in H2O). To balance this, we need to add a coefficient of 6 in front of O2 on the left side, resulting in 6 O2 molecules. This change will give us a total of 12 oxygen atoms on both sides, making the equation balanced. Choice A (5) is incorrect because it does not account for all the oxygen atoms present in the products. Choices C (7) and D (8) are incorrect as they would result in an imbalance in the number of oxygen atoms on both sides of the equation.
5. What is the pathway of oxygenated blood from the lungs?
- A. Lungs to the left atrium, through the mitral valve into the left ventricle, pumped into the aorta upon contraction, then dispersed to tissues via a network of arteries and capillaries
- B. Lungs to the right atrium, through the mitral valve into the right ventricle, pumped into the aorta upon contraction, then dispersed to tissues via a network of arteries and veins
- C. Lungs to the left atrium, directly to the right aorta, then dispersed to tissues via a network of arteries and capillaries
- D. Lungs to the left atrium, through the septal valve, stored in the left ventricles, then dispersed to tissues via a network of arteries and capillaries
Correct answer: A
Rationale: The correct pathway of oxygenated blood from the lungs is as follows: Oxygenated blood travels from the lungs to the left atrium, then passes through the mitral valve into the left ventricle. From there, it is pumped into the aorta upon contraction of the heart and is then dispersed to various tissues throughout the body via a network of arteries and capillaries. Choice B is incorrect as it incorrectly mentions the right atrium and ventricle, which are associated with deoxygenated blood. Choice C is incorrect as it mentions a direct connection to the right aorta, which does not exist in the circulatory system. Choice D is incorrect as it refers to the septal valve (which is not anatomically correct) and storing blood in the left ventricle, which does not occur in the normal circulation of blood.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access