ATI TEAS 7
ATI TEAS Science Questions
1. What is the major difference between somatic and germline mutations?
- A. Somatic mutations usually benefit the individual while germline mutations usually harm them.
- B. Since germline mutations only affect one cell, they are less noticeable than the rapidly dividing somatic cells.
- C. Somatic mutations are not expressed for several generations, but germline mutations are expressed immediately.
- D. Germline mutations are usually inherited while somatic mutations will affect only the individual.
Correct answer: D
Rationale: The major difference between somatic and germline mutations is that germline mutations are usually inherited and can be passed on to offspring, while somatic mutations occur in non-reproductive cells and only affect the individual in which they occur. This means that germline mutations have the potential to be present in future generations, while somatic mutations do not.
2. What is the primary function of the digestive system?
- A. To break down food into nutrients
- B. To absorb oxygen
- C. To produce energy
- D. To regulate body temperature
Correct answer: A
Rationale: The correct answer is A: 'To break down food into nutrients.' The primary function of the digestive system is to break down food into nutrients that can be absorbed by the body for energy, growth, and repair. The digestive system is not responsible for absorbing oxygen (Choice B), as that is the role of the respiratory system. While the digestion process does release energy from nutrients, the primary function is not to produce energy (Choice C), but rather to extract nutrients for energy production. Regulating body temperature (Choice D) is primarily handled by the thermoregulatory mechanisms in the body, such as the skin and sweat glands, not the digestive system.
3. A student hypothesizes that higher sugar consumption negatively impacts test scores. To investigate this, the student recruits participants to consume varying amounts of sugar, wait for one hour, and then complete an aptitude test. The student will record both the amount of sugar consumed and the test scores to analyze the relationship. What is the best experimental approach?
- A. Conduct one round of testing where each participant consumes a different amount of sugar.
- B. Conduct two rounds of testing: In the first round, participants consume varying amounts of sugar; in the second round, they consume the same amount of sugar as they did in the first round.
- C. Conduct two rounds of testing: In the first round, participants consume varying amounts of sugar; in the second round, participants consume no sugar.
- D. Conduct one round of testing where all participants consume the same amount of sugar.
Correct answer: C
Rationale: Option C provides the most thorough experimental design by including a control group. In the first round, varying sugar intake levels help explore the relationship between sugar consumption and test scores. In the second round, by having participants consume no sugar, the student can compare results to observe any changes due to sugar intake. This approach enhances the validity of the findings by accounting for potential confounding factors and better identifying causal relationships. Choice A is not ideal as it lacks a control group and does not compare the impact of sugar consumption. Choice B does not explore the effects of sugar consumption adequately as it does not include a group without sugar. Choice D does not allow for comparison between different sugar consumption levels, limiting the ability to draw meaningful conclusions.
4. Which of the following is an end product of cellular respiration?
- A. Oxygen
- B. ATP energy
- C. Carbon dioxide
- D. Water
Correct answer: B
Rationale: The correct answer is B: ATP energy. During cellular respiration, glucose is broken down to produce ATP, which is the primary energy currency of cells. While oxygen is required for cellular respiration to occur, it is not an end product but rather a reactant. Carbon dioxide and water are byproducts of cellular respiration, alongside ATP. Therefore, options A, C, and D are incorrect as they are not end products of cellular respiration.
5. Which process is characterized by nuclear fission?
- A. A heavy nucleus capturing a neutron and releasing energy
- B. The fusion of two nuclei to form a heavier element
- C. A lighter element emitting an alpha particle through radioactive decay
- D. An electron being absorbed by the nucleus with the release of a gamma ray
Correct answer: A
Rationale: Nuclear fission is the process where a heavy nucleus, like uranium-235, captures a neutron, leading to its division into two lighter nuclei. This process releases a substantial amount of energy in the form of heat and gamma rays. It is utilized in nuclear power plants and atomic bombs due to its capacity to produce significant energy. Choices B, C, and D describe different nuclear processes: fusion of two nuclei to form a heavier element, emission of alpha particles from a lighter element through radioactive decay, and absorption of an electron by the nucleus with the release of a gamma ray, respectively. These processes are distinct from nuclear fission and do not involve the splitting of heavy nuclei into lighter ones.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access