ATI TEAS 7
TEAS 7 practice test science
1. What is the main function of the endoplasmic reticulum (ER) in the cell?
- A. To synthesize and transport proteins and lipids
- B. To package and transport proteins
- C. To break down macromolecules
- D. To store genetic material
Correct answer: A
Rationale: The endoplasmic reticulum (ER) is a network of membranes within the cell that plays a crucial role in protein and lipid synthesis. It consists of two types: rough ER, which is studded with ribosomes and involved in protein synthesis, and smooth ER, which is involved in lipid synthesis and detoxification. The ER's main function is to synthesize proteins and lipids, not just package and transport them. While the ER is involved in transporting these synthesized proteins and lipids to other parts of the cell or outside the cell, its primary role is in their synthesis. Breaking down macromolecules is primarily the function of lysosomes, which are membrane-bound organelles containing enzymes for digestion. Storing genetic material is the function of the nucleus, which houses the cell's DNA. The ER is not involved in storing genetic material.
2. How can you differentiate between a bacterial and viral infection based solely on symptoms?
- A. It's impossible to differentiate solely based on symptoms.
- B. Bacterial infections typically respond well to antibiotics, while viral infections don't.
- C. Bacterial infections usually cause fever, while viral infections don't.
- D. Viral infections often present with respiratory symptoms like a cough, while bacterial infections don't.
Correct answer: A
Rationale: It is impossible to differentiate between a bacterial and viral infection based solely on symptoms because many symptoms overlap between the two types of infections. Symptoms like fever, cough, and others can be present in both bacterial and viral infections. Additional diagnostic tests such as cultures or blood tests are often needed to determine the cause of the infection accurately. Relying only on symptoms can lead to misdiagnosis and inappropriate treatment. Choices B, C, and D are incorrect because they oversimplify the differentiation process and do not encompass the complexity of symptoms associated with bacterial and viral infections. While it is true that bacterial infections may respond to antibiotics and some differences in symptoms may be observed between bacterial and viral infections, these are not definitive indicators without proper diagnostic tests.
3. Which neurotransmitter is associated with mood, sleep, and memory?
- A. Dopamine
- B. Serotonin
- C. Acetylcholine
- D. Glutamate
Correct answer: B
Rationale: Serotonin is a neurotransmitter that is associated with regulating mood, sleep, and memory. It plays a crucial role in maintaining emotional balance and is often a target in treating mood disorders like depression and anxiety. Serotonin also helps regulate sleep patterns and is connected to memory function. Dopamine (choice A) is more commonly linked to reward, motivation, and movement. Acetylcholine (choice C) is involved in muscle control and memory. Glutamate (choice D) is a major excitatory neurotransmitter in the brain but is not primarily associated with mood, sleep, and memory.
4. How can the peripheral nervous system be further divided?
- A. Sensory and motor
- B. Sympathetic and parasympathetic
- C. Myelinated and unmyelinated
- D. Central and peripheral
Correct answer: A
Rationale: The peripheral nervous system can be further divided into sensory (afferent) neurons that carry information from sensory receptors to the central nervous system and motor (efferent) neurons that carry information from the central nervous system to muscles and glands. Choice A, 'Sensory and motor,' is the correct answer as it accurately identifies the two main functional divisions of the peripheral nervous system. Choices B, 'Sympathetic and parasympathetic,' are divisions of the autonomic nervous system, not the peripheral nervous system. Choice C, 'Myelinated and unmyelinated,' refers to the structural classification of nerve fibers rather than functional divisions. Choice D, 'Central and peripheral,' contrasts the central nervous system with the peripheral nervous system, not further dividing the peripheral nervous system itself.
5. What type of lens is thinner at the center than at the edges and causes light rays to diverge?
- A. Convex lens
- B. Concave lens
- C. Diverging lens
- D. Plano-convex lens
Correct answer: B
Rationale: A concave lens is thinner at the center than at the edges, causing light rays to diverge when passing through it. This type of lens is also known as a diverging lens because it causes light rays to spread out. Concave lenses are used in various optical devices to correct vision problems and in scientific instruments to diverge light rays for specific purposes. The other choices are incorrect. A convex lens is thicker at the center and converges light rays, while a plano-convex lens has one flat surface and one convex surface, converging light. Diverging lens is a general term that can refer to concave or plano-concave lenses, but in this context, the specific type being referred to is a concave lens.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access