ATI TEAS 7
TEAS 7 practice test science
1. What is the main function of the endoplasmic reticulum (ER) in the cell?
- A. To synthesize and transport proteins and lipids
- B. To package and transport proteins
- C. To break down macromolecules
- D. To store genetic material
Correct answer: A
Rationale: The endoplasmic reticulum (ER) is a network of membranes within the cell that plays a crucial role in protein and lipid synthesis. It consists of two types: rough ER, which is studded with ribosomes and involved in protein synthesis, and smooth ER, which is involved in lipid synthesis and detoxification. The ER's main function is to synthesize proteins and lipids, not just package and transport them. While the ER is involved in transporting these synthesized proteins and lipids to other parts of the cell or outside the cell, its primary role is in their synthesis. Breaking down macromolecules is primarily the function of lysosomes, which are membrane-bound organelles containing enzymes for digestion. Storing genetic material is the function of the nucleus, which houses the cell's DNA. The ER is not involved in storing genetic material.
2. What accurately describes the Linnaean system of classification?
- A. It focuses on evolutionary relationships between organisms.
- B. It uses dichotomous keys for identification.
- C. It groups organisms based on shared functions.
- D. It emphasizes a hierarchical ranking system.
Correct answer: D
Rationale: The Linnaean system of classification, developed by Carl Linnaeus, is based on a hierarchical ranking system where organisms are grouped into categories based on shared characteristics. This system organizes organisms into a hierarchy of increasingly specific categories, from broad to narrow, such as kingdom, phylum, class, order, family, genus, and species. The emphasis on a hierarchical ranking system allows for systematic organization and classification of a wide variety of organisms based on their similarities and differences, making it easier to study and understand the diversity of life forms. Choice A is incorrect because the Linnaean system is not primarily focused on evolutionary relationships but rather on shared characteristics for classification. Choice B is incorrect because dichotomous keys are tools used for identifying organisms, not the fundamental basis of the Linnaean system. Choice C is incorrect as the Linnaean system categorizes organisms based on shared characteristics, not shared functions.
3. What is the formula for calculating density?
- A. Density = Volume / Mass
- B. Density = Mass × Volume
- C. Density = Mass / Volume
- D. Density = Volume - Mass
Correct answer: A
Rationale: Density is defined as the amount of mass in a given volume. The formula for calculating density is Density = Mass / Volume. This means that you divide the mass of an object by its volume to determine its density. Therefore, the correct formula for calculating density is Density = Volume / Mass. Choice A is correct because density is calculated by dividing the volume by the mass. Choices B, C, and D are incorrect because they do not represent the correct relationship between mass and volume in calculating density.
4. According to Newton's third law of motion, for every action, there is an equal and opposite _________.
- A. Reaction
- B. Force
- C. Acceleration
- D. Momentum
Correct answer: A
Rationale: Newton's third law of motion states that for every action, there is an equal and opposite reaction. This law emphasizes that forces always exist in pairs. When one object exerts a force on a second object (action), the second object exerts an equal force in the opposite direction back on the first object (reaction). This principle is crucial in understanding the interactions between objects and the resulting motion observed in the physical world. Choices B, C, and D are incorrect because while force is involved, the specific concept highlighted by Newton's third law is the equal and opposite reaction. Acceleration and momentum are also related to motion but are not directly tied to Newton's third law of motion, which focuses on the equality and oppositeness of forces in interactions.
5. What are the small, finger-like projections in the small intestines called?
- A. Cilia
- B. Rugae
- C. Trachea
- D. Villi
Correct answer: D
Rationale: The correct answer is D: Villi. Villi are small, finger-like projections in the small intestine that increase the surface area for absorption, aiding in the absorption of nutrients. Cilia (Choice A) are tiny hair-like structures found in various parts of the body but are not present in the small intestine. Rugae (Choice B) are folds in the mucosa of the stomach that allow for its expansion during digestion. The trachea (Choice C) is part of the respiratory system, responsible for carrying air to and from the lungs, and is not related to the small intestine.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access