ATI TEAS 7
TEAS version 7 quizlet science
1. What is the half-life of a radioactive isotope, and how does it relate to its decay rate?
- A. The time it takes for half of the initial sample to decay.
- B. The time it takes for all of the sample to decay.
- C. The rate at which new isotopes are created.
- D. The energy released during decay.
Correct answer: A
Rationale: The half-life of a radioactive isotope is the time it takes for half of the initial sample to decay. After one half-life, half of the radioactive atoms have decayed. The decay rate, however, refers to the rate at which radioactive atoms decay, which is not directly related to the half-life. Choice B is incorrect because it does not correctly define the half-life. Choice C is incorrect as it refers to the creation of new isotopes, not the decay process. Choice D is incorrect as it describes the energy released during decay, which is not the same as the concept of half-life.
2. When two cars with different masses collide head-on, which car experiences a greater change in momentum?
- A. The car with the larger mass
- B. The car with the smaller mass
- C. Both cars experience the same change in momentum
- D. It depends on the initial velocities of the cars
Correct answer: C
Rationale: In a head-on collision between two cars, the law of conservation of momentum states that the total momentum of the isolated system remains constant before and after the collision. The change in momentum of one car is equal in magnitude but opposite in direction to the change in momentum of the other car. As a result, both cars experience the same change in momentum during the collision. Choice A is incorrect because the change in momentum is the same for both cars due to the conservation of momentum principle. Choice B is incorrect as the smaller mass car does not experience a greater change in momentum. Choice D is incorrect as the initial velocities of the cars do not determine which car experiences a greater change in momentum; it is solely dependent on the masses of the colliding cars.
3. What type of bond connects sugar and phosphate in DNA?
- A. Hydrogen
- B. Ionic
- C. Covalent
- D. Overt
Correct answer: C
Rationale: The correct answer is Covalent (C). In DNA, a covalent bond connects sugar and phosphate molecules. This bond involves the sharing of electron pairs between the atoms, providing stability to the DNA structure. Hydrogen bonds are important in DNA structure but are not the primary bond connecting sugar and phosphate. Ionic bonds involve the transfer of electrons, and 'overt' is not a term related to the bond connecting sugar and phosphate in DNA.
4. The acceleration of a falling object due to gravity has been proven to be 9.8 m/s^2. A scientist drops a cactus four times and measures the acceleration with an accelerometer and gets the following results: 9.79 m/s^2, 9.81 m/s^2, 9.80 m/s^2, and 9.78 m/s^2. Which of the following accurately describes the measurements?
- A. They're both accurate and precise.
- B. They're accurate but not precise.
- C. They're precise but not accurate.
- D. They're neither accurate nor precise.
Correct answer: A
Rationale: The measurements are close to the true value of 9.8 m/s^2 and are also close to each other, indicating both accuracy and precision. Accuracy refers to how close a measurement is to the true value, while precision refers to how close repeated measurements are to each other. In this case, the measurements are accurate because they are close to the accepted value of 9.8 m/s^2, and they are precise because they are clustered closely around each other. Therefore, choice A, 'They're both accurate and precise,' is the correct answer. Choice B is incorrect because the measurements are precise as they are close to each other, but they are also accurate as they are close to the true value. Choice C is incorrect because the measurements are accurate as they are close to the true value, and choice D is incorrect because the measurements exhibit both accuracy and precision in this scenario.
5. What is the process by which lighter nuclei fuse to form heavier nuclei, releasing a large amount of energy?
- A. Fission
- B. Fusion
- C. Radioactivity
- D. Chain reaction
Correct answer: B
Rationale: Fusion is the process by which lighter nuclei combine to form heavier nuclei, releasing a large amount of energy in the process. This process is the source of energy in stars, including our Sun. Fission, the process of splitting heavier nuclei into lighter nuclei, is not correct. Radioactivity involves the emission of particles or radiation from the nucleus of an unstable atom, which is different from fusion. A chain reaction is a self-sustaining reaction where the products of one reaction cause further reactions, which is unrelated to fusion.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access