ATI TEAS 7
TEAS 7 science study guide free
1. What is the Aufbau principle?
- A. The principle that electrons fill orbitals in order of increasing energy.
- B. The principle that electrons cannot occupy the same orbital with the same spin.
- C. The principle that the maximum number of electrons in an orbital is 2n^2, where n is the energy level of the orbital.
- D. The principle that the attractive force between an electron and the nucleus is inversely proportional to the distance between them.
Correct answer: A
Rationale: The Aufbau principle states that electrons fill orbitals in order of increasing energy. This principle helps to explain the electron configuration of atoms and how electrons are distributed within the energy levels and sublevels of an atom. By following the Aufbau principle, one can determine the electron configuration of an atom by sequentially adding electrons to orbitals in order of their increasing energy levels, starting with the lowest energy level. Choice B is incorrect as it describes the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same four quantum numbers. Choice C is incorrect as it refers to the formula for calculating the maximum number of electrons that can occupy an energy level. Choice D is incorrect as it relates to Coulomb's law, which describes the electrostatic interaction between charged particles.
2. Elements tend to gain or lose electrons to achieve stable electron configurations like those of noble gases. Their group number often indicates the number of electrons gained/lost and the resulting ionic charge, providing a good starting point for prediction.
- A. Ionic bonds involve electron sharing, while metallic bonds involve electron transfer.
- B. Ionic bonds are weak and directional, while metallic bonds are strong and non-directional.
- C. Ionic bonds exist between metals and non-metals, while metallic bonds exist only between metals.
- D. Ionic bonds form discrete molecules, while metallic bonds form extended structures.
Correct answer: C
Rationale: Ionic bonds typically form between metals and non-metals, where one atom donates electrons (cation) and the other accepts electrons (anion). This results in the transfer of electrons. Metallic bonds, on the other hand, occur between metal atoms where electrons are shared among a sea of delocalized electrons, leading to the characteristic properties of metals like malleability and conductivity. Choice A is incorrect because ionic bonds involve electron transfer, not sharing. Choice B is incorrect as ionic bonds are strong, not weak, and are non-directional, while metallic bonds are strong and non-directional. Choice D is incorrect as ionic bonds do not form discrete molecules but rather a lattice structure, whereas metallic bonds form extended structures.
3. Which types of glial cells are found in the CNS?
- A. Schwann cells, satellite cells
- B. Astrocytes, microglia, ependymal cells, oligodendrocytes
- C. Satellite cells, microglia, oligodendrocytes
- D. Astrocytes, Schwann cells, satellite cells
Correct answer: B
Rationale: The correct answer is B. Glial cells in the CNS include astrocytes, microglia, ependymal cells, and oligodendrocytes. Schwann cells and satellite cells are found in the PNS. Astrocytes are the most abundant type of glial cells and are involved in nutrient support, repair, and maintenance of the extracellular environment. Microglia are the resident immune cells of the CNS, playing a role in immune defense. Ependymal cells line the ventricles of the brain and the central canal of the spinal cord, contributing to the production and circulation of cerebrospinal fluid. Oligodendrocytes are responsible for producing myelin, which insulates axons in the CNS. Understanding the specific functions of each type of glial cell is essential in grasping the complexity of the central nervous system's support and protective mechanisms.
4. Which of the following is the largest organ in the human body?
- A. Liver
- B. Brain
- C. Heart
- D. Skin
Correct answer: D
Rationale: The skin is the largest organ in the human body. It covers the entire body, serving as a protective barrier against pathogens, UV radiation, and physical damage. Additionally, the skin plays a crucial role in regulating body temperature and synthesizing vitamin D when exposed to sunlight. Choices A, B, and C are incorrect. The liver is the largest internal organ, the brain is the control center of the body, and the heart is a vital organ responsible for pumping blood throughout the body. However, none of these organs are the largest in terms of surface area or overall size.
5. Why is the simple columnar epithelium lining the small intestine crucial?
- A. Movement
- B. Support
- C. Absorption
- D. Insulation
Correct answer: C
Rationale: The simple columnar epithelium lining the small intestine is crucial for absorption. This type of epithelium is specialized for absorption due to its tall and closely packed cells, which increase the surface area available for nutrient absorption. The primary function of the small intestine is to absorb nutrients from digested food, and the simple columnar epithelium's structure aids in this process by providing a large surface area for absorption. Choices A, B, and D are incorrect because movement, support, and insulation are not primary functions associated with the simple columnar epithelium in the small intestine. While these functions are essential in other tissues or organs, absorption is the key role of the simple columnar epithelium in the small intestine.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access