ATI TEAS 7
TEAS Test 7 science
1. What is the 3D structure of a protein called?
- A. Tertiary structure
- B. Secondary structure
- C. Primary structure
- D. Quaternary structure
Correct answer: A
Rationale: - Primary structure refers to the linear sequence of amino acids in a protein. - Secondary structure refers to local folded structures within a protein, such as alpha helices and beta sheets. - Tertiary structure is the overall 3D shape of a protein, which is determined by interactions between amino acid side chains and the environment. - Quaternary structure refers to the arrangement of multiple protein subunits in a protein complex. Therefore, the 3D structure of a protein is called the tertiary structure because it represents the overall folding of the protein into a specific shape.
2. What is the principle behind optical fibers used in communication?
- A. Reflection of light within the fiber
- B. Refraction of light due to different densities within the fiber
- C. Total internal reflection guiding light through the fiber core
- D. Diffraction of light around bends in the fiber
Correct answer: C
Rationale: Optical fibers used in communication rely on the principle of total internal reflection guiding light through the fiber core. Total internal reflection occurs when light traveling through the core of the fiber is reflected back into the core due to the higher refractive index of the core compared to the cladding. This reflection ensures that the light remains confined within the core and propagates along the fiber without significant loss, allowing for efficient transmission of signals over long distances in optical communication systems. Choice A is incorrect because optical fibers do not primarily rely on simple reflection; instead, they utilize total internal reflection to guide light. Choice B is incorrect as the primary principle is not the refraction of light due to different densities within the fiber, but rather total internal reflection. Choice D is incorrect as diffraction is not the main principle behind optical fibers, which mainly rely on total internal reflection to guide light through the fiber core.
3. How does ingested food move through the digestive tract?
- A. Chewing, digestion, absorption
- B. Swallowing, peristalsis, segmentation
- C. Swallowing, mastication, defecation
- D. Digestion, absorption, excretion
Correct answer: B
Rationale: The correct answer is B: Swallowing, peristalsis, segmentation. Food moves through the digestive tract by first being swallowed, then undergoing peristalsis (wave-like movements that propel food along the digestive tract), and finally undergoing segmentation (mixing movements in the intestines). Chewing and digestion occur in the mouth and stomach, respectively, while absorption and excretion happen later in the digestive process. Choice A is incorrect as absorption is a later stage in the process. Choice C is incorrect because defecation is the elimination of waste, not the movement of food. Choice D is incorrect as excretion is the elimination of waste products, not the movement of ingested food through the digestive tract.
4. What are energy levels and orbitals?
- A. Energy levels are the paths that electrons travel around the nucleus of an atom, and orbitals are the regions where electrons are most likely to be found.
- B. Energy levels are the regions where electrons are most likely to be found, and orbitals are the paths that electrons travel around the nucleus of an atom.
- C. Energy levels are the same as orbitals.
- D. Energy levels and orbitals do not exist.
Correct answer: A
Rationale: Energy levels refer to the specific energies that electrons in an atom can have, while orbitals are the regions within an atom where electrons are most likely to be found. Electrons do not travel in fixed paths around the nucleus like planets around the sun, as suggested in option B. Option C is incorrect because energy levels and orbitals are distinct concepts in atomic structure. Option D is incorrect as energy levels and orbitals are fundamental concepts in understanding the behavior of electrons in atoms.
5. Which of the following processes describes the conversion of glucose to pyruvic acid during glycolysis?
- A. Glycogenesis
- B. Glycolysis
- C. Glycogenolysis
- D. Gluconeogenesis
Correct answer: B
Rationale: The correct answer is B: Glycolysis. Glycolysis is the metabolic pathway where glucose is broken down to produce pyruvic acid and ATP, generating energy in the form of ATP. Glycogenesis (choice A) is the process of glycogen synthesis, Glycogenolysis (choice C) is the breakdown of glycogen to release glucose, and Gluconeogenesis (choice D) is the synthesis of glucose from non-carbohydrate sources. Therefore, during glycolysis, glucose is converted into pyruvic acid, which is a crucial step in energy production.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access