ATI TEAS 7
TEAS 7 practice test science
1. What happens when an atom loses an electron?
- A. It forms a molecule.
- B. It gains a positive charge and becomes an ion.
- C. It alters its elemental identity.
- D. No change occurs; it remains neutral.
Correct answer: B
Rationale: When an atom loses an electron, it gains a positive charge and becomes an ion. This occurs because the number of protons in the atom exceeds the number of electrons, leading to a positive charge. Therefore, the atom undergoes a transformation into an ion by losing an electron. Choice A is incorrect because losing an electron does not result in the formation of a molecule, as molecules are made up of bonded atoms. Choice C is incorrect because losing an electron does not change the fundamental identity of the atom; it only changes its charge. Choice D is incorrect because losing an electron causes the atom to become positively charged, altering its neutrality.
2. What determines the magnitude of the frictional force acting on a book sliding across a table?
- A. Only the mass of the book
- B. Only the normal force from the table
- C. Both the mass of the book and the normal force from the table
- D. Neither the mass of the book nor the normal force from the table
Correct answer: C
Rationale: The magnitude of the frictional force acting on the book sliding across a table is determined by both the mass of the book and the normal force from the table. Frictional force is proportional to the normal force (which is influenced by the weight of the book, i.e., its mass) and is affected by the surfaces in contact and other friction-related factors. Therefore, both the mass of the book and the normal force from the table are essential in determining the frictional force experienced by the book during its sliding motion. Choices A, B, and D are incorrect because friction is a result of the interaction between the surfaces and is influenced by both the mass of the object and the normal force acting on it.
3. What determines the frequency of oscillations in a spring-mass system when the spring is stretched and released?
- A. The mass of the object
- B. The stiffness of the spring
- C. The initial displacement of the object
- D. All of the above
Correct answer: B
Rationale: The frequency of oscillations in a spring-mass system is determined by the stiffness of the spring (spring constant) and the mass of the object. The stiffness of the spring affects how quickly the system oscillates back and forth, while the mass of the object influences the inertia and therefore the frequency. The initial displacement of the object does not impact the frequency of oscillations. Choice A is incorrect because while the mass of the object affects the frequency, it is not the sole determining factor. Choice C is incorrect as the initial displacement affects the amplitude of oscillations, not the frequency. Choice D is incorrect as not all factors listed determine the frequency, making it an incorrect choice.
4. What is the periodic law?
- A. The statement that the properties of the elements are a periodic function of their atomic numbers.
- B. The statement that elements can be arranged in a table where elements with similar properties are grouped together.
- C. The statement that elements can be arranged in a table where the atomic number of an element is equal to the number of protons in its nucleus.
- D. The statement that elements can be arranged in a table where the atomic mass of an element is equal to the number of neutrons in its nucleus.
Correct answer: A
Rationale: The periodic law states that the properties of elements are a periodic function of their atomic numbers. This means that when elements are arranged in order of increasing atomic number, there is a periodic repetition of their properties. This forms the basis for the modern periodic table. Option B describes the organization of elements in the periodic table, which is related to the periodic law but not the definition of it. Options C and D are incorrect as they describe concepts related to atomic structure (atomic number and atomic mass) rather than the periodic law itself.
5. When unpolarized light passes through a polarizing filter, the intensity of the transmitted light is:
- A. Completely absorbed
- B. Reduced by half
- C. Unaffected
- D. Doubled
Correct answer: B
Rationale: When unpolarized light passes through a polarizing filter, the filter only allows light waves oscillating in a specific direction to pass through while blocking light waves oscillating in other directions. Since unpolarized light consists of light waves oscillating in all possible directions, when it passes through a polarizing filter, only half of the light waves (those oscillating in the direction allowed by the filter) are transmitted. As a result, the intensity of the transmitted light is reduced by half. Choice A is incorrect because the light is not completely absorbed; choice C is incorrect because the polarizing filter affects the transmitted light; and choice D is incorrect because the intensity does not double, but rather decreases by half due to the selective transmission of light waves in a specific direction by the polarizing filter.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access