ATI TEAS 7
ATI TEAS Science
1. The acceleration of a falling object due to gravity has been proven to be 9.8 m/s^2. A scientist drops a cactus four times and measures the acceleration with an accelerometer and gets the following results: 9.79 m/s^2, 9.81 m/s^2, 9.80 m/s^2, and 9.78 m/s^2. Which of the following accurately describes the measurements?
- A. They're both accurate and precise.
- B. They're accurate but not precise.
- C. They're precise but not accurate.
- D. They're neither accurate nor precise.
Correct answer: A
Rationale: The measurements are close to the true value of 9.8 m/s^2 and are also close to each other, indicating both accuracy and precision. Accuracy refers to how close a measurement is to the true value, while precision refers to how close repeated measurements are to each other. In this case, the measurements are accurate because they are close to the accepted value of 9.8 m/s^2, and they are precise because they are clustered closely around each other. Therefore, choice A, 'They're both accurate and precise,' is the correct answer. Choice B is incorrect because the measurements are precise as they are close to each other, but they are also accurate as they are close to the true value. Choice C is incorrect because the measurements are accurate as they are close to the true value, and choice D is incorrect because the measurements exhibit both accuracy and precision in this scenario.
2. Why can optical fibers transmit light signals around bends?
- A. Reflection
- B. Refraction
- C. Diffraction
- D. Polarization
Correct answer: B
Rationale: Optical fibers can transmit light signals around bends primarily due to refraction. Refraction is the bending of light as it passes from one medium to another, such as from air to glass in an optical fiber. This bending allows the light signals to travel through the fiber even around bends, making optical fibers an efficient means of transmitting light signals over long distances. Reflection (Choice A) occurs when light bounces off a surface, which is not the primary mechanism allowing light to travel around bends in optical fibers. Diffraction (Choice C) refers to the bending of light waves around obstacles or openings, but it is not the main reason light signals can traverse bends in optical fibers. Polarization (Choice D) is the orientation of light waves in a specific plane, but it does not play a significant role in enabling light to navigate bends in optical fibers.
3. During embryonic development, most vertebrates exhibit structures called pharyngeal pouches. These pouches eventually develop into different structures in various vertebrate groups, such as the human jaw and inner ear. Pharyngeal pouches are an example of:
- A. Analogous structures with different evolutionary origins but similar functions
- B. Homologous structures with a common evolutionary origin but diverse functions
- C. Vestigial structures that no longer serve a vital function in some organisms
- D. Atavisms, the reappearance of a trait absent in recent generations
Correct answer: B
Rationale: Pharyngeal pouches in vertebrates are an example of homologous structures because they share a common evolutionary origin. Despite developing into different structures in various vertebrate groups, such as the jaw and inner ear in humans, these structures originated from the same ancestral feature. This concept of homology highlights the evolutionary relationship between different species and how structures can be modified over time to serve different functions while retaining a common origin. Choice A is incorrect because analogous structures have similar functions but different evolutionary origins, which does not apply to pharyngeal pouches. Choice C is incorrect as vestigial structures are remnants of features that were functional in ancestors but have reduced or lost their original function, which is not the case for pharyngeal pouches. Choice D is incorrect because atavisms refer to the reappearance of traits absent in recent generations, which is not the characteristic of pharyngeal pouches.
4. Which types of glial cells are in the PNS?
- A. Schwann cells, satellite cells
- B. Astrocytes, oligodendrocytes
- C. Microglia, ependymal cells
- D. Satellite cells, oligodendrocytes
Correct answer: A
Rationale: The correct answer is A, which includes Schwann cells and satellite cells as the types of glial cells found in the peripheral nervous system. Schwann cells support neurons and myelinate axons, while satellite cells provide structural support and regulate the microenvironment around neurons in the PNS. Options B, C, and D are incorrect as they refer to glial cell types that are typically found in the central nervous system, not the peripheral nervous system. Astrocytes and oligodendrocytes are primarily located in the CNS, where they perform functions such as providing structural support and forming the blood-brain barrier. Microglia are immune cells found in the CNS responsible for immune defense and maintenance of neural environment, while ependymal cells line the cerebral ventricles and the central canal of the spinal cord, contributing to the production and circulation of cerebrospinal fluid.
5. What is the name of the cartilage flap that covers the trachea during swallowing, preventing food from entering the airway?
- A. Epiglottis
- B. Glottis
- C. Larynx
- D. Pharynx
Correct answer: A
Rationale: The correct answer is A: Epiglottis. The epiglottis is a cartilage flap located at the base of the tongue that covers the trachea during swallowing. Its primary function is to prevent food and liquids from entering the airway and instead directs them towards the esophagus. The glottis (choice B) refers to the space between the vocal cords in the larynx. The larynx (choice C) is the voice box containing the vocal cords responsible for phonation. The pharynx (choice D) is the throat region connecting the mouth and the esophagus, playing a role in both digestion and respiration.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access