ATI TEAS 7
TEAS version 7 quizlet science
1. During micturition, the process involves a combination of:
- A. Gravity alone
- B. Voluntary muscle contractions only
- C. Involuntary muscle contractions only
- D. Both voluntary and involuntary muscle contractions
Correct answer: D
Rationale: During micturition, which is the process of urination, both voluntary and involuntary muscle contractions are involved. Voluntary muscle contractions include the relaxation of the external urethral sphincter, allowing the release of urine, while involuntary muscle contractions involve the detrusor muscle in the bladder contracting to expel urine. Choices A, B, and C are incorrect because micturition is not solely dependent on gravity, voluntary muscle contractions, or involuntary muscle contractions alone. The correct answer is D as both types of muscle contractions are necessary for the complete process of urination.
2. What is the responsibility of the somatic nervous system?
- A. Breathing
- B. Thought
- C. Movement
- D. Fear
Correct answer: C
Rationale: The somatic nervous system is responsible for controlling voluntary movements of skeletal muscles. This system communicates sensory information and controls voluntary movements, such as walking or reaching for objects. Breathing is primarily regulated by the autonomic nervous system, which functions involuntarily. Thought processes involve complex interactions between various regions of the brain and are not directly controlled by the somatic nervous system. Fear is an emotional response that involves the limbic system of the brain and the autonomic nervous system, not the somatic nervous system.
3. What is the role of the diaphragm in respiration?
- A. To regulate air pressure in the lungs
- B. To contract and expand the lungs
- C. To store oxygen
- D. To break down carbon dioxide
Correct answer: B
Rationale: The correct answer is B. The diaphragm plays a crucial role in respiration by contracting and expanding the lungs. When the diaphragm contracts, it moves downward, creating more space in the chest cavity and allowing the lungs to expand. This expansion leads to a decrease in pressure inside the lungs, causing air to rush in. When the diaphragm relaxes, it moves back up, decreasing the space in the chest cavity and causing the lungs to deflate. This action increases the pressure in the lungs, leading to air being pushed out. Therefore, the diaphragm's main function is to facilitate the inhalation and exhalation of air by contracting and expanding the lungs. Choices A, C, and D are incorrect because the diaphragm's primary function is not to regulate air pressure in the lungs, store oxygen, or break down carbon dioxide. Instead, its main purpose is to aid in the mechanical process of breathing.
4. Which hormone, produced by the pineal gland, plays a role in regulating sleep-wake cycles and is often associated with the body's internal circadian rhythm?
- A. Melatonin
- B. Serotonin
- C. Dopamine
- D. Endorphin
Correct answer: A
Rationale: Melatonin is the hormone produced by the pineal gland that plays a crucial role in regulating sleep-wake cycles and is associated with the body's internal circadian rhythm. Melatonin levels typically rise in the evening, signaling to the body that it is time to sleep, and decrease in the morning, helping to wake up and feel alert. Serotonin, dopamine, and endorphins are neurotransmitters that serve different functions in the body and are not primarily responsible for regulating sleep-wake cycles. Serotonin is involved in regulating mood, appetite, and sleep. Dopamine plays a role in reward-motivated behavior and motor control. Endorphins are involved in pain regulation and are often referred to as the body's natural painkillers.
5. Salts like sodium iodide (NaI) and potassium chloride (KCl) use what type of bond?
- A. Ionic bonds
- B. Disulfide bridges
- C. Covalent bonds
- D. London dispersion forces
Correct answer: A
Rationale: Salts like sodium iodide (NaI) and potassium chloride (KCl) use ionic bonds. Ionic bonds are formed between atoms with significantly different electronegativities, leading to the transfer of electrons from one atom to another. In the case of NaI and KCl, sodium (Na) and potassium (K) are metals that easily lose electrons to become positively charged ions, while iodide (I) and chloride (Cl) are nonmetals that readily accept electrons to become negatively charged ions. The attraction between the oppositely charged ions forms the ionic bond, which holds the compound together in a lattice structure. Disulfide bridges (option B) are covalent bonds formed between sulfur atoms in proteins, not in salts. Covalent bonds (option C) involve the sharing of electrons between atoms and are typically seen in molecules, not ionic compounds like salts. London dispersion forces (option D) are weak intermolecular forces that occur between all types of molecules but are not the primary type of bond in salts like NaI and KCl.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access