ATI TEAS 7
ATI TEAS Science Questions
1. In which type of cell would you expect to find a high concentration of lysosomes?
- A. Cardiac cells
- B. Glandular cells
- C. Immune cells
- D. Neurons
Correct answer: C
Rationale: The correct answer is C: Immune cells. Immune cells, such as macrophages, contain many lysosomes for breaking down pathogens. Lysosomes are organelles responsible for digestion and waste removal within the cell, and immune cells require a high concentration of lysosomes to aid in their defense mechanisms against pathogens. Choice A, Cardiac cells, is incorrect because lysosomes are not primarily abundant in cardiac cells. Choice B, Glandular cells, is incorrect as well since lysosomes are not specifically concentrated in glandular cells. Choice D, Neurons, is also incorrect because while lysosomes are present in neurons, they are not typically found in high concentrations compared to immune cells.
2. What is the most basic unit of structure in living things?
- A. Cell
- B. Organelle
- C. Oxygen
- D. Pigment
Correct answer: A
Rationale: The cell is indeed the most basic unit of life, forming the foundation of all living organisms. Cells are the building blocks of all living things, containing organelles that perform specific functions. While oxygen is essential for life, it is not a structural unit. Similarly, pigment is a component found within cells but is not the fundamental unit of structure. Therefore, the correct answer is 'A: Cell.'
3. Which hormone is responsible for regulating sleep-wake cycles and is influenced by light exposure?
- A. Melatonin
- B. Cortisol
- C. Estrogen
- D. Glucagon
Correct answer: A
Rationale: The correct answer is A: Melatonin. Melatonin is the hormone responsible for regulating sleep-wake cycles, also known as the circadian rhythm. Its production is influenced by light exposure, with levels increasing in the evening in response to darkness, signaling the body that it is time to sleep. Choice B, cortisol, is a stress hormone and does not directly regulate sleep-wake cycles. Choice C, estrogen, is a sex hormone and is not primarily involved in regulating sleep. Choice D, glucagon, is a hormone that increases blood glucose levels and is not related to sleep-wake cycles.
4. The 'fight-or-flight' response is triggered by the hormone released from the:
- A. Thyroid gland
- B. Adrenal glands
- C. Pituitary gland
- D. Pancreas
Correct answer: B
Rationale: The 'fight-or-flight' response is triggered by the release of adrenaline (epinephrine) and norepinephrine from the adrenal glands. These hormones prepare the body to either confront or flee from a perceived threat or stressor. The adrenal glands are crucial in initiating this rapid physiological response. Choices A, C, and D are incorrect because the thyroid gland primarily regulates metabolism and energy levels, the pituitary gland controls other endocrine glands but does not directly trigger the 'fight-or-flight' response, and the pancreas is responsible for regulating blood sugar levels through insulin and glucagon, not for triggering the 'fight-or-flight' response.
5. Which of Mendel's Laws states that alleles for a gene segregate during gamete formation?
- A. Law of Independent Assortment
- B. Law of Segregation
- C. Law of Dominance
- D. Law of Probability
Correct answer: B
Rationale: The Law of Segregation, proposed by Gregor Mendel, states that alleles for a gene segregate during gamete formation. This means that each parent passes on only one allele for each gene to their offspring. This law explains how genetic diversity is maintained and how different combinations of alleles are generated in offspring. The Law of Independent Assortment (option A) is not the correct answer as it states that alleles of different genes assort independently of each other during gamete formation, not specifically alleles of a single gene. The Law of Dominance (option C) is incorrect as it pertains to the expression of alleles rather than their segregation during gamete formation. The Law of Probability (option D) is also incorrect as it is a general concept describing the likelihood of events, not specifically related to alleles segregating during gamete formation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access