ATI TEAS 7
TEAS Test 7 science quizlet
1. In the context of cholesterol levels, LDL cholesterol is often referred to as:
- A. HDL or "good" cholesterol.
- B. LDL or "bad" cholesterol.
- C. Total cholesterol, encompassing both LDL and HDL.
- D. VLDL, a type of triglyceride transported in the bloodstream.
Correct answer: B
Rationale: LDL cholesterol is often referred to as "bad" cholesterol because high levels of LDL can lead to plaque buildup in the arteries, increasing the risk of heart disease and stroke. LDL cholesterol is considered harmful as it contributes to the formation of plaque in blood vessels, whereas HDL cholesterol helps remove LDL from the arteries. Choice A is incorrect because HDL is known as "good" cholesterol, which helps remove LDL cholesterol from the bloodstream. Choice C is incorrect as it refers to total cholesterol, which includes LDL, HDL, and other lipids. Choice D is incorrect as VLDL is a different type of lipoprotein that carries triglycerides and is not specifically related to LDL cholesterol.
2. What term describes the bouncing back of waves after striking a surface or boundary?
- A. Diffraction
- B. Refraction
- C. Reflection
- D. Interference
Correct answer: C
Rationale: The correct answer is 'Reflection.' Reflection is the term used to describe the bouncing back of waves after striking a surface or boundary. Diffraction, on the other hand, refers to the bending of waves around obstacles. Refraction is the bending of waves as they pass from one medium to another. Interference involves the combination of two or more waves that results in a new wave pattern. Therefore, in this context, choices A, B, and D are incorrect as they do not specifically relate to the bouncing back of waves after striking a surface or boundary.
3. How many grams of solid CaCO3 are needed to make 600 mL of a 35 M solution? The atomic masses for the elements are as follows: Ca = 40.1 g/mol; C = 12.01 g/mol; O = 16.00 g/mol.
- A. 18.3 g
- B. 19.7 g
- C. 21.0 g
- D. 24.2 g
Correct answer: B
Rationale: 1. First, calculate the molar mass of CaCO3 by adding the atomic masses of Ca, C, and 3 O atoms: 40.1 + 12.01 + (3 * 16.00) = 100.13 g/mol. 2. Calculate the number of moles in 600 mL of a 35 M solution: 600 mL * 35 mol/L = 21,000 mmol. 3. Convert moles to grams using the molar mass of CaCO3: 21,000 mmol * (100.13 g/mol / 1000 mmol/mol) = 2,102.73 g. 4. Therefore, you would need 19.7 g of solid CaCO3 to make 600 mL of a 35 M solution.
4. What is the smallest bone in the human body?
- A. Stapes (Middle ear bone)
- B. Patella (Kneecap)
- C. Phalanges (Finger bones)
- D. Ribs
Correct answer: A
Rationale: The correct answer is A: Stapes (Middle ear bone). The stapes, located in the middle ear, is indeed the smallest bone in the human body. Despite its small size, the stapes is vital for hearing as it transmits and amplifies sound vibrations, contributing significantly to auditory perception. Choices B, C, and D are incorrect. The patella (kneecap) is the largest sesamoid bone in the human body, not the smallest bone. Phalanges are the bones in fingers and toes, not the smallest bone overall. Ribs are long bones that protect the chest cavity, not the smallest bone in the body.
5. Which of the following blood proteins can destroy pathogens?
- A. Complement system
- B. Fibrinogen
- C. Major histocompatibility complex
- D. Platelets
Correct answer: A
Rationale: The correct answer is A: Complement system. The complement system is a vital component of the immune system responsible for destroying pathogens through various mechanisms like promoting inflammation, enhancing phagocytosis, and directly lysing pathogens. Fibrinogen is crucial for blood clotting, the major histocompatibility complex is involved in immune responses, and platelets aid in blood clotting and wound healing. However, none of these directly destroy pathogens as the complement system does.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access