ATI TEAS 7
TEAS 7 science practice questions
1. How many moles of water are produced when 0.5 moles of methane (CH4) react with excess oxygen?
- A. 0.5 moles
- B. 1 mole
- C. 2 moles
- D. 3 moles
Correct answer: B
Rationale: The balanced chemical equation for the combustion of methane is: CH4 + 2O2 -> CO2 + 2H2O. This equation shows that 1 mole of methane produces 2 moles of water. Therefore, when 0.5 moles of methane react, they will produce 1 mole of water. The ratio of water to methane is 2:1, meaning that for every mole of methane that reacts, it produces 2 moles of water. Since only 0.5 moles of methane are reacting, the amount of water produced will be half of what would be produced if 1 mole of methane reacted, resulting in 1 mole of water being produced. Choice A is incorrect because it does not consider the stoichiometry of the reaction. Choices C and D are incorrect as they do not align with the balanced chemical equation and the stoichiometric ratios involved in the reaction.
2. What are the white blood cells responsible for coordinating the immune response called?
- A. Red blood cells
- B. Platelets
- C. Lymphocytes
- D. Neutrophils
Correct answer: C
Rationale: Lymphocytes, which include B cells, T cells, and natural killer cells, are responsible for coordinating the immune response. They play a crucial role in recognizing and fighting against pathogens and foreign substances in the body. Red blood cells are responsible for oxygen transport, platelets aid in blood clotting, and neutrophils are white blood cells primarily involved in combating infections. Therefore, the correct answer is C, lymphocytes, as they are specifically involved in coordinating immune responses.
3. What is the primary factor that determines whether a solute will dissolve in a solvent?
- A. Temperature
- B. Pressure
- C. Molecular structure
- D. Particle size
Correct answer: C
Rationale: The primary factor that determines whether a solute will dissolve in a solvent is the molecular structure. The compatibility of the solute's molecules with the solvent's molecules is crucial for dissolution to occur. While temperature, pressure, and particle size can influence the rate of dissolution, they are not the primary factors determining solubility. Molecular structure plays a key role in determining if a solute will form favorable interactions with the solvent, which is essential for dissolution to take place effectively. Temperature can affect solubility by changing the kinetic energy of molecules, pressure typically has a minor effect on solubility except for gases, and particle size influences the rate of dissolution by increasing surface area, but none of these factors are as fundamentally important as molecular structure in determining solubility.
4. Which organelle is responsible for breaking down macromolecules, such as proteins, carbohydrates, and lipids, into their smaller building blocks?
- A. Golgi apparatus
- B. Mitochondria
- C. Lysosomes
- D. Endoplasmic reticulum
Correct answer: C
Rationale: Lysosomes are membrane-bound organelles containing digestive enzymes that break down macromolecules, such as proteins, carbohydrates, and lipids, into their smaller building blocks. These enzymes help in the process of intracellular digestion and recycling of cellular components. The Golgi apparatus is involved in processing and packaging proteins for secretion or for use within the cell. Mitochondria are responsible for producing energy in the form of ATP through cellular respiration. The endoplasmic reticulum is involved in protein synthesis and lipid metabolism. Therefore, the correct answer is 'C: Lysosomes' as they specifically function in the breakdown of macromolecules into smaller components, distinguishing them from the other organelles mentioned.
5. If you compare a 1 M solution of NaCl to a 1 M solution of glucose (C6H12O6) in water, which solution would have the higher boiling point?
- A. The NaCl solution
- B. The glucose solution
- C. They would have the same boiling point
- D. It depends on the temperature
Correct answer: A
Rationale: 1. Boiling point elevation: When a solute is added to a solvent, it raises the boiling point of the solution compared to the pure solvent. This phenomenon is known as boiling point elevation. 2. Van't Hoff factor: The extent of boiling point elevation depends on the number of particles the solute dissociates into in the solution. NaCl dissociates into two ions (Na+ and Cl-) in water, while glucose does not dissociate into ions. Therefore, NaCl has a higher Van't Hoff factor than glucose. 3. Colligative properties: Boiling point elevation is a colligative property, meaning it depends on the concentration of the solute particles, not the identity of the solute. Since both NaCl and glucose are 1 M solutions, the NaCl solution will have a higher boiling point due to its higher Van't Hoff factor. 4. Conclusion: The NaCl solution
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access