ATI TEAS 7
TEAS 7 practice test free science
1. How is power related to work and time?
- A. Power = Work ÷ Time
- B. Power = Work × Time
- C. Power = Work + Time
- D. Power = Work - Time
Correct answer: A
Rationale: Power is defined as the rate at which work is done or the amount of work done per unit of time. The correct formula to relate power, work, and time is Power = Work ÷ Time. This formula shows that power is calculated by dividing the amount of work done by the time taken to do that work, indicating the rate at which work is being done. Choice B (Power = Work × Time) is incorrect because multiplying work and time does not yield a measure of power. Choice C (Power = Work + Time) is incorrect as adding work and time does not define power. Choice D (Power = Work - Time) is also incorrect because subtracting work and time does not relate to the concept of power.
2. A rocket engine expels hot gases backwards. What principle explains the rocket's forward motion?
- A. Newton's first law of motion
- B. Newton's second law of motion
- C. Newton's third law of motion
- D. Law of conservation of energy
Correct answer: C
Rationale: Newton's third law of motion states that for every action, there is an equal and opposite reaction. In the case of a rocket engine expelling hot gases backwards, the action is the expulsion of gases, and the reaction is the forward motion of the rocket. The hot gases being expelled act as the action force, propelling the rocket in the opposite direction as the reaction force, resulting in the rocket's forward motion. Newton's first law of motion (Choice A) pertains to inertia, stating that an object in motion will stay in motion unless acted upon by an external force. Newton's second law of motion (Choice B) relates force, mass, and acceleration, which is not directly applicable to the scenario of a rocket engine propulsion. The law of conservation of energy (Choice D) is a fundamental principle stating that energy cannot be created or destroyed but can only be transformed, which does not directly explain the forward motion of the rocket in this context.
3. What is the independent variable in the botanist's experiment?
- A. Temperature
- B. Root tissue
- C. Light exposure
- D. Root length
Correct answer: A
Rationale: In an experiment, the independent variable is the factor that is deliberately manipulated or changed by the researcher. The botanist is likely altering the temperature to observe its effect on the plants. Therefore, temperature is the independent variable in the botanist's experiment. Choice B, root tissue, is not the independent variable as it is not the factor being intentionally changed in the experiment. Choice C, light exposure, and choice D, root length, are also not the independent variables as they are not the factors being purposely manipulated by the researcher in this scenario.
4. Which of the following reagents can be used to convert a primary alcohol to an alkyl halide?
- A. HI
- B. H2O
- C. NaOH
- D. SOCl2
Correct answer: D
Rationale: SOCl2 (thionyl chloride) is commonly used to convert primary alcohols to alkyl halides through an SN2 mechanism. Thionyl chloride reacts with the alcohol to form an alkyl chloride. HI (hydroiodic acid) is typically used to convert alcohols to alkyl iodides specifically, not alkyl halides in general. H2O (water) and NaOH (sodium hydroxide) are not reagents used for converting alcohols to alkyl halides. Therefore, the correct answer is SOCl2 as it facilitates the conversion of primary alcohols to alkyl halides, unlike the other options provided.
5. Which of the following is responsible for maintaining the body's circadian rhythm?
- A. Thyroid gland
- B. Pineal gland
- C. Pancreas
- D. Hypothalamus
Correct answer: B
Rationale: The pineal gland is responsible for maintaining the body's circadian rhythm by producing melatonin. Melatonin is a hormone that helps regulate the sleep-wake cycle and is essential in controlling the body's internal clock. The thyroid gland, although important for metabolism, is not directly involved in regulating circadian rhythms. The pancreas plays a role in blood sugar regulation through insulin production, not in controlling circadian rhythms. The hypothalamus is involved in regulating various bodily functions, but the pineal gland is specifically responsible for the circadian rhythm.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access