ATI TEAS 7
ATI TEAS Practice Science Test
1. How do killer T cells recognize infected cells?
- A. The B cells flag the infected cells with amino acids.
- B. Tiny bits of the virus's RNA are left around the cell.
- C. Macrophages show up to help consume the infected cell.
- D. The T cells have receptors that recognize the proteins the virus leaves on the surface of the cell.
Correct answer: D
Rationale: Killer T cells recognize infected cells by detecting viral proteins displayed on the surface of these cells. The T cells possess receptors specifically designed to identify these viral proteins, allowing them to target and eliminate the infected cells. Choice A is incorrect because B cells are not directly involved in the recognition process of infected cells by killer T cells. Choice B is incorrect because tiny bits of the virus's RNA being left around the cell is not how killer T cells primarily recognize infected cells. Choice C is incorrect because while macrophages play a role in immune responses, they do not directly assist in the recognition of infected cells by killer T cells.
2. What enzyme plays a key role in breaking down carbohydrates in the small intestine?
- A. Pepsin
- B. Lipase
- C. Amylase
- D. Trypsin
Correct answer: C
Rationale: Amylase is the enzyme responsible for breaking down carbohydrates in the small intestine. It specifically targets starches and sugars, breaking them down into smaller molecules like maltose and glucose that can be absorbed by the body. Pepsin is an enzyme that breaks down proteins in the stomach, not the small intestine. Lipase is responsible for breaking down fats, not carbohydrates. Trypsin is an enzyme that breaks down proteins in the small intestine, not carbohydrates.
3. Which property of a wave remains constant when the wave enters a different medium?
- A. Frequency
- B. Wavelength
- C. Amplitude
- D. Speed
Correct answer: A
Rationale: When a wave enters a different medium, its frequency remains constant. Frequency is an intrinsic property of the wave determined by its source, and it does not change when transitioning between different mediums. On the other hand, wavelength, amplitude, and speed of the wave can all be altered when the wave moves from one medium to another. Wavelength is dependent on the speed of the wave and can change when entering a different medium due to differences in propagation speed. Amplitude can also change as it is influenced by factors like energy loss or gain at the boundary of the mediums. Speed, determined by the medium's properties, typically changes when a wave transitions between different mediums due to variations in the medium's density and elasticity.
4. What type of intermolecular force is responsible for the high surface tension of water?
- A. Hydrogen bonding
- B. London dispersion forces
- C. Ionic bonding
- D. Metallic bonding
Correct answer: A
Rationale: The high surface tension of water is primarily due to the strong hydrogen bonding between water molecules. Hydrogen bonding is a specific type of intermolecular force that occurs between a hydrogen atom covalently bonded to a highly electronegative atom, like oxygen in water, and another electronegative atom nearby. This unique interaction results in a strong attraction between water molecules at the surface, leading to the cohesive forces responsible for the high surface tension of water. Choices B, C, and D are incorrect because London dispersion forces, ionic bonding, and metallic bonding do not account for the high surface tension observed in water. London dispersion forces are relatively weaker intermolecular forces, while ionic and metallic bonding are types of intramolecular forces that do not directly contribute to the surface tension of water.
5. After a person eats birthday cake, which of the following enzymes is needed to break down the sucrose in the cake?
- A. Lactase
- B. Maltase
- C. Peptidase
- D. Sucrase
Correct answer: D
Rationale: Sucrase is the correct enzyme needed to break down sucrose into its component sugars, glucose, and fructose. Lactase is responsible for breaking down lactose, maltase for maltose, and peptidase for proteins; therefore, they are not the enzymes required to digest sucrose specifically. In the context of digesting birthday cake, which contains sucrose, sucrase is the enzyme needed for this particular sugar.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access