ATI TEAS 7
TEAS Test 7 science quizlet
1. Fluorescent microscopy utilizes which property of certain molecules to create a visible image?
- A. Staining properties
- B. Light absorption
- C. Fluorescence emission
- D. Refraction
Correct answer: C
Rationale: Fluorescent microscopy relies on the property of certain molecules to fluoresce when exposed to specific wavelengths of light. When these molecules absorb light energy, they become excited and then emit light at a longer wavelength, producing a visible image. This emitted light is what is used to create the image in fluorescent microscopy, making option C, fluorescence emission, the correct answer. Staining properties (option A) are used to enhance contrast in microscopy but are not the primary mechanism in fluorescent microscopy. Light absorption (option B) is involved in the excitation of fluorescent molecules but is not the property used to create the visible image. Refraction (option D) is the bending of light as it passes through different mediums and is not the property utilized in fluorescent microscopy.
2. In endocrine regulation, the feedback loop is a critical concept. In a negative feedback loop, high levels of a hormone can result in:
- A. Further stimulating the release of the same hormone
- B. Inhibiting the release of the hormone or its production
- C. Having no effect on the hormone's regulation
- D. Increasing the need for another hormone entirely
Correct answer: B
Rationale: In a negative feedback loop, high levels of a hormone will inhibit the release of the hormone or its production. This mechanism is crucial for maintaining homeostasis by preventing excessive levels of hormones in the body. When a hormone reaches a certain concentration, it triggers the body to decrease its production or release, thereby ensuring a balance within the system. Choice A is incorrect because a negative feedback loop aims to counteract high hormone levels, not further stimulate them. Choice C is incorrect as high hormone levels do have an effect by triggering the feedback loop. Choice D is incorrect as the negative feedback loop operates within the same hormone system rather than increasing the need for an entirely different hormone.
3. During which phase of the cardiac cycle do the atria contract, pushing blood into the ventricles?
- A. Atrial diastole
- B. Ventricular systole
- C. Atrial systole
- D. Ventricular diastole
Correct answer: C
Rationale: Atrial systole is the phase of the cardiac cycle during which the atria contract, pushing blood into the ventricles. This occurs after the atria have been filled during atrial diastole. Ventricular systole refers to the phase when the ventricles contract to push blood out of the heart, not when the atria contract. Ventricular diastole is the phase when the ventricles relax and fill with blood, not when the atria contract. Therefore, the correct answer is atrial systole as it specifically describes the atrial contraction phase.
4. The brain is part of which system?
- A. Integumentary system
- B. Nervous system
- C. Endocrine system
- D. Respiratory system
Correct answer: B
Rationale: The brain is a crucial organ that serves as the command center of the body, making it a key component of the nervous system. It processes sensory information, coordinates movements, and regulates various bodily functions. Therefore, the brain is correctly categorized as part of the nervous system. Choices A, C, and D are incorrect because the integumentary system pertains to the skin, the endocrine system involves hormone regulation, and the respiratory system is responsible for breathing. These systems do not encompass the brain's functions or structure.
5. What is the importance of RNA splicing?
- A. Removes introns from the mRNA molecule
- B. Adds the poly-A tail to the mRNA molecule
- C. Activates the mRNA molecule for translation
- D. Modifies the structure of the protein
Correct answer: A
Rationale: RNA splicing is a crucial process in gene expression where non-coding regions called introns are removed from the pre-mRNA molecule, and the remaining coding regions called exons are joined together to form the mature mRNA molecule. This process ensures that only the protein-coding sequences are retained in the mRNA for translation, allowing for the production of functional proteins. Therefore, option A is the correct answer as it accurately describes the importance of RNA splicing in generating mature mRNA molecules for protein synthesis. B) Adding the poly-A tail to the mRNA molecule is a post-transcriptional modification that occurs after RNA splicing and is not directly related to the process of removing introns. C) Activating the mRNA molecule for translation is typically achieved through the addition of a 5' cap and the poly-A tail, rather than through RNA splicing. D) Modifying the structure of the protein is not directly related to the process of RNA splicing, which primarily focuses on mRNA maturation by removing non-coding introns.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access