ATI TEAS 7
TEAS 7 practice test free science
1. What is the definition of power in physics?
- A. The rate of change of energy
- B. The rate of doing work or transferring energy
- C. The measure of an object's potential energy
- D. The force exerted on an object
Correct answer: B
Rationale: The correct answer is B: 'The rate of doing work or transferring energy.' Power in physics is defined as the rate at which work is done or energy is transferred. It is a measure of how quickly energy is transferred or converted. Power is not the same as energy itself but rather how fast energy is being transferred or converted. Choice A, 'The rate of change of energy,' is incorrect because power is about the rate of work or energy transfer, not just the change in energy. Choice C, 'The measure of an object's potential energy,' is incorrect as power is not a measure of potential energy but rather the rate of energy transfer. Choice D, 'The force exerted on an object,' is incorrect as power is related to work and energy transfer, not just force exerted.
2. Which structure in the respiratory system is responsible for voice production?
- A. Pharynx
- B. Larynx
- C. Trachea
- D. Bronchi
Correct answer: B
Rationale: The correct answer is the larynx. The larynx, commonly referred to as the voice box, is responsible for voice production in the respiratory system. It contains vocal cords that vibrate to produce sound. The pharynx is a passage for food and air, the trachea is a tubular structure that carries air to and from the lungs, and the bronchi are the main airway passages in the lungs. Therefore, choices A, C, and D are incorrect as they do not play a direct role in voice production.
3. When two cars with different masses collide head-on, which car experiences a greater change in momentum?
- A. The car with the larger mass
- B. The car with the smaller mass
- C. Both cars experience the same change in momentum
- D. It depends on the initial velocities of the cars
Correct answer: C
Rationale: In a head-on collision between two cars, the law of conservation of momentum states that the total momentum of the isolated system remains constant before and after the collision. The change in momentum of one car is equal in magnitude but opposite in direction to the change in momentum of the other car. As a result, both cars experience the same change in momentum during the collision. Choice A is incorrect because the change in momentum is the same for both cars due to the conservation of momentum principle. Choice B is incorrect as the smaller mass car does not experience a greater change in momentum. Choice D is incorrect as the initial velocities of the cars do not determine which car experiences a greater change in momentum; it is solely dependent on the masses of the colliding cars.
4. Which term refers to the condition where a muscle shortens in length while generating force, leading to movement at a joint?
- A. Isometric contraction
- B. Eccentric contraction
- C. Isotonic contraction
- D. Concentric contraction
Correct answer: D
Rationale: Concentric contraction refers to the condition where a muscle shortens in length while generating force, leading to movement at a joint. This type of contraction is commonly associated with the lifting phase of an exercise where the muscle is actively shortening against resistance. Isometric contraction (Choice A) involves muscle contraction without a change in muscle length, Eccentric contraction (Choice B) involves the muscle lengthening while generating force, and Isotonic contraction (Choice C) refers to muscle contraction against a constant load with a change in muscle length.
5. What type of bond connects amino acids to form proteins?
- A. Covalent
- B. Peptide
- C. Ionic
- D. Hydrogen
Correct answer: B
Rationale: The correct answer is 'Peptide'. Peptide bonds are the specific type of bond that connects amino acids together to form proteins. These bonds form through a condensation reaction between the amino group of one amino acid and the carboxyl group of another amino acid, creating a covalent bond. While covalent bonds are involved in the formation of peptide bonds, the direct bond connecting amino acids in proteins is the peptide bond. Ionic bonds involve the attraction between charged particles, and hydrogen bonds are weaker bonds compared to covalent and peptide bonds, playing a different role in protein structure.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access