ATI TEAS 7
Mometrix TEAS 7 science practice test
1. After exposure to a pathogen, the immune system develops memory. What type of immune cell is responsible for this immunological memory?
- A. B cells
- B. T cells (specifically memory T cells)
- C. Phagocytes
- D. Natural killer cells
Correct answer: A
Rationale: B cells are responsible for immunological memory. Memory B cells, a type of B cells, retain a 'memory' of specific pathogens, enabling them to rapidly produce antibodies upon re-exposure. This rapid antibody production facilitates a quicker and more effective immune response. Although memory T cells also contribute to immunological memory by mounting a swift and robust immune response upon re-exposure to the pathogen, it is primarily memory B cells that play a crucial role in producing antibodies. Phagocytes are important immune cells involved in engulfing and digesting pathogens, while natural killer cells are primarily responsible for recognizing and eliminating abnormal cells, such as virus-infected cells or tumor cells. However, when it comes to immunological memory and antibody production, B cells are key players.
2. Which neurotransmitter is associated with mood, sleep, and memory?
- A. Dopamine
- B. Serotonin
- C. Acetylcholine
- D. Glutamate
Correct answer: B
Rationale: Serotonin is a neurotransmitter that is associated with regulating mood, sleep, and memory. It plays a crucial role in maintaining emotional balance and is often a target in treating mood disorders like depression and anxiety. Serotonin also helps regulate sleep patterns and is connected to memory function. Dopamine (choice A) is more commonly linked to reward, motivation, and movement. Acetylcholine (choice C) is involved in muscle control and memory. Glutamate (choice D) is a major excitatory neurotransmitter in the brain but is not primarily associated with mood, sleep, and memory.
3. Salts like sodium iodide (NaI) and potassium chloride (KCl) use what type of bond?
- A. Ionic bonds
- B. Disulfide bridges
- C. Covalent bonds
- D. London dispersion forces
Correct answer: A
Rationale: Salts like sodium iodide (NaI) and potassium chloride (KCl) use ionic bonds. Ionic bonds are formed between atoms with significantly different electronegativities, leading to the transfer of electrons from one atom to another. In the case of NaI and KCl, sodium (Na) and potassium (K) are metals that easily lose electrons to become positively charged ions, while iodide (I) and chloride (Cl) are nonmetals that readily accept electrons to become negatively charged ions. The attraction between the oppositely charged ions forms the ionic bond, which holds the compound together in a lattice structure. Disulfide bridges (option B) are covalent bonds formed between sulfur atoms in proteins, not in salts. Covalent bonds (option C) involve the sharing of electrons between atoms and are typically seen in molecules, not ionic compounds like salts. London dispersion forces (option D) are weak intermolecular forces that occur between all types of molecules but are not the primary type of bond in salts like NaI and KCl.
4. Which of the following structures in the body is responsible for protecting the lungs and heart?
- A. Rib cage
- B. Pelvis
- C. Femur
- D. Vertebral column
Correct answer: A
Rationale: The rib cage is the correct answer. It plays a crucial role in protecting vital organs like the lungs and heart. The rib cage forms a protective barrier around these organs, shielding them from external trauma or injuries. It acts as a sturdy cage, offering structural support and safeguarding the delicate tissues and structures of the lungs and heart. The pelvis, femur, and vertebral column do not directly protect the lungs and heart; instead, they have other important functions in the body, such as supporting the body's weight, enabling movement, and protecting the spinal cord.
5. What is the 3D structure of a protein called?
- A. Tertiary structure
- B. Secondary structure
- C. Primary structure
- D. Quaternary structure
Correct answer: A
Rationale: - Primary structure refers to the linear sequence of amino acids in a protein. - Secondary structure refers to local folded structures within a protein, such as alpha helices and beta sheets. - Tertiary structure is the overall 3D shape of a protein, which is determined by interactions between amino acid side chains and the environment. - Quaternary structure refers to the arrangement of multiple protein subunits in a protein complex. Therefore, the 3D structure of a protein is called the tertiary structure because it represents the overall folding of the protein into a specific shape.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access