ATI TEAS 7
TEAS 7 science study guide free
1. Which gas is the most abundant in Earth's atmosphere?
- A. Nitrogen
- B. Oxygen
- C. Carbon dioxide
- D. Argon
Correct answer: A
Rationale: Nitrogen is the most abundant gas in Earth's atmosphere, constituting approximately 78% of the air we breathe. It is essential for various biological processes, including plant growth and nitrogen fixation. Moreover, nitrogen is a key component of the greenhouse effect, playing a crucial role in regulating the planet's temperature. Oxygen, while important for respiration, comprises about 21% of the atmosphere. Carbon dioxide, though vital for photosynthesis and a greenhouse gas, is present in much lower concentrations than nitrogen. Argon, an inert gas, is a minor component of the atmosphere.
2. During gas exchange in the alveoli, what happens to oxygen?
- A. Oxygen is released from the alveoli into the bloodstream.
- B. Oxygen is absorbed from the alveoli into the bloodstream.
- C. Oxygen is converted into carbon dioxide.
- D. Oxygen is stored in the alveoli for later use.
Correct answer: B
Rationale: During gas exchange in the alveoli, oxygen is absorbed from the alveoli into the bloodstream. This process occurs due to the difference in partial pressures of oxygen between the alveoli and the bloodstream, causing oxygen to move from an area of higher concentration (alveoli) to an area of lower concentration (bloodstream). Oxygen is then transported by red blood cells to tissues throughout the body for cellular respiration. Choice A is incorrect as oxygen moves from the alveoli into the bloodstream, not the other way around. Choice C is incorrect as oxygen is not converted into carbon dioxide during gas exchange. Choice D is incorrect as oxygen is not stored in the alveoli but rather continuously exchanged with carbon dioxide during respiration.
3. What is the name of the long bone found in the upper arm?
- A. Femur
- B. Tibia
- C. Humerus
- D. Radius
Correct answer: C
Rationale: The correct answer is the humerus. The humerus is the long bone located in the upper arm, between the shoulder and elbow. Option A, Femur, is incorrect as it is the long bone found in the thigh. Option B, Tibia, is incorrect as it is a long bone found in the lower leg. Option D, Radius, is incorrect as it is a bone located in the forearm, not the upper arm.
4. Chromatids divide into identical chromosomes and migrate to opposite ends of the cell in which of the following phases of mitosis?
- A. metaphase
- B. anaphase
- C. prophase
- D. telophase
Correct answer: B
Rationale: During anaphase of mitosis, the sister chromatids detach from each other and migrate to opposite poles of the cell. This process ensures that each daughter cell ultimately receives an identical set of chromosomes, as the chromatids separate and become individual chromosomes again. This is a crucial step in ensuring accurate distribution of genetic material during cell division. In metaphase, the chromosomes align at the cell's equator but do not separate yet. Prophase is the phase where chromatin condenses into chromosomes and the nuclear envelope breaks down. Telophase is the final phase where the nuclear envelope reforms around the separated chromosomes.
5. What is the primary function of the CRISPR-Cas9 system in gene editing?
- A. To amplify specific DNA sequences.
- B. To cut DNA at specific locations.
- C. To deliver genes into cells.
- D. To sequence entire genomes.
Correct answer: B
Rationale: The CRISPR-Cas9 system is a powerful tool used in gene editing to precisely target and cut DNA at specific locations within the genome. This system consists of a guide RNA that directs the Cas9 enzyme to the desired DNA sequence, where it creates a double-strand break. This break can then be repaired by the cell's natural DNA repair mechanisms, allowing for the introduction of specific genetic modifications. Options A, C, and D are incorrect as they do not accurately describe the primary function of the CRISPR-Cas9 system in gene editing. Amplifying DNA sequences, delivering genes into cells, and sequencing entire genomes are not the main functions of the CRISPR-Cas9 system, which is primarily focused on precise DNA cutting for targeted genetic modifications.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access