ATI TEAS 7
TEAS 7 science practice questions
1. What type of energy does a stretched rubber band possess?
- A. Kinetic energy
- B. Potential energy
- C. Thermal energy
- D. Mechanical energy
Correct answer: B
Rationale: When a rubber band is stretched, it stores potential energy due to its position or configuration. This potential energy can be converted into kinetic energy when the rubber band is released and returns to its original shape. Therefore, the correct answer is potential energy, as the energy is stored in the stretched rubber band and can be released upon returning to its original state. Choices A, C, and D are incorrect because kinetic energy is associated with motion, thermal energy is related to heat, and mechanical energy is a broader category that includes both potential and kinetic energy.
2. What is the importance of RNA splicing?
- A. Removes introns from the mRNA molecule
- B. Adds the poly-A tail to the mRNA molecule
- C. Activates the mRNA molecule for translation
- D. Modifies the structure of the protein
Correct answer: A
Rationale: RNA splicing is a crucial process in gene expression where non-coding regions called introns are removed from the pre-mRNA molecule, and the remaining coding regions called exons are joined together to form the mature mRNA molecule. This process ensures that only the protein-coding sequences are retained in the mRNA for translation, allowing for the production of functional proteins. Therefore, option A is the correct answer as it accurately describes the importance of RNA splicing in generating mature mRNA molecules for protein synthesis. B) Adding the poly-A tail to the mRNA molecule is a post-transcriptional modification that occurs after RNA splicing and is not directly related to the process of removing introns. C) Activating the mRNA molecule for translation is typically achieved through the addition of a 5' cap and the poly-A tail, rather than through RNA splicing. D) Modifying the structure of the protein is not directly related to the process of RNA splicing, which primarily focuses on mRNA maturation by removing non-coding introns.
3. Which of the following neurotransmitters slows down the activity of neurons, preventing them from becoming overexcited?
- A. Acetylcholine
- B. Dopamine
- C. GABA
- D. Serotonin
Correct answer: C
Rationale: The correct answer is C: GABA (gamma-aminobutyric acid). GABA acts as an inhibitory neurotransmitter that reduces neuronal activity, thus preventing overexcitation. Acetylcholine (choice A) is involved in muscle control and cognitive function, but it is not primarily responsible for slowing down neuronal activity. Dopamine (choice B) plays a role in reward-motivated behavior and motor control, rather than inhibiting neuronal firing. Serotonin (choice D) is involved in mood regulation, sleep, and appetite but does not primarily slow down neuronal activity to prevent overexcitation.
4. What is the difference between a germline mutation and a somatic mutation?
- A. Germline mutations are passed to offspring, while somatic mutations are not.
- B. Germline mutations occur in reproductive cells, while somatic mutations occur in body cells.
- C. Germline mutations only affect genes, while somatic mutations can affect any DNA.
- D. Germline mutations are always beneficial, while somatic mutations are always harmful.
Correct answer: B
Rationale: Rationale: - Germline mutations are changes in the DNA of reproductive cells (sperm or egg cells) and can be passed on to offspring, affecting all cells in the resulting organism. - Somatic mutations are changes in the DNA of non-reproductive cells (body cells) and are not passed on to offspring. These mutations only affect the cells that arise from the mutated cell. - Option A is incorrect because somatic mutations are not passed to offspring. - Option C is incorrect because both germline and somatic mutations can affect any DNA. - Option D is incorrect because the effects of mutations, whether germline or somatic, can be beneficial, harmful, or have no significant impact.
5. What is the role of the diaphragm in the respiratory system?
- A. To regulate blood pressure
- B. To contract and expand the lungs
- C. To produce red blood cells
- D. To absorb oxygen
Correct answer: B
Rationale: The correct answer is B: To contract and expand the lungs. The diaphragm plays a crucial role in the respiratory system by contracting and expanding the lungs. When it contracts, it flattens, increasing the volume of the thoracic cavity and causing air to be drawn into the lungs. Conversely, when it relaxes, it moves back up, decreasing the thoracic cavity volume and pushing air out of the lungs. This process is essential for breathing and the exchange of oxygen and carbon dioxide in the body. Choices A, C, and D are incorrect. The diaphragm is not involved in regulating blood pressure, producing red blood cells, or absorbing oxygen. Its primary function is to aid in respiration by facilitating breathing through its contraction and relaxation movements.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access