ATI TEAS 7
ATI TEAS 7 science review
1. What is the process of breaking down lipids into fatty acids and glycerol called?
- A. Lipolysis
- B. Gluconeogenesis
- C. Krebs cycle
- D. Oxidative phosphorylation
Correct answer: A
Rationale: - Lipolysis is indeed the correct answer. It is the process of breaking down lipids (fats) into fatty acids and glycerol. This process occurs in adipose tissue and is important for releasing stored energy in the form of fatty acids. - Gluconeogenesis is the process of synthesizing glucose from non-carbohydrate sources like amino acids and glycerol, not breaking down lipids. - The Krebs cycle (also known as the citric acid cycle) is a series of chemical reactions that occur in the mitochondria to generate energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. - Oxidative phosphorylation is the final stage of cellular respiration where ATP is produced through the transfer of electrons in the electron transport chain. It is not specifically related to the breakdown of lipids into fatty acids and glycerol.
2. Which of the following organs is NOT directly involved in the mechanical breakdown of food?
- A. Mouth
- B. Stomach
- C. Small intestine
- D. Esophagus
Correct answer: D
Rationale: The correct answer is the esophagus (D). The esophagus is not directly involved in the mechanical breakdown of food. Its primary function is to transport food from the mouth to the stomach through peristalsis, a series of muscular contractions. The mouth is involved in the initial mechanical breakdown by chewing and mixing food with saliva. The stomach mechanically breaks down food through churning movements, and the small intestine further breaks down food through peristalsis and segmentation. Choices A, B, and C are directly involved in mechanical breakdown processes. The mouth helps in chewing and mixing food with saliva, the stomach mechanically breaks down food through churning movements, and the small intestine continues the breakdown process with peristalsis and segmentation.
3. How do hydrogen bonds in water affect its characteristics?
- A. Hydrogen bonds are not polar enough to attract non-polar molecules.
- B. Hydrogen bonds cause water to be less dense when it is a solid than when it is a liquid.
- C. Hydrogen bonds cause water to have high surface tension, allowing some organisms to move across it.
- D. Hydrogen bonds cause water to be a good solvent.
Correct answer: C
Rationale: Hydrogen bonds in water contribute to its high surface tension, enabling some organisms to move across the water's surface. This property is essential for certain insects and small animals that rely on surface tension to move or stay afloat on water. Choice A is incorrect because hydrogen bonds are polar and can attract polar and other charged molecules. Choice B is incorrect as hydrogen bonds make ice less dense than liquid water, which is a unique property. Choice D is incorrect as the ability of water to act as a good solvent is primarily due to its polarity, not just hydrogen bonding.
4. In physics, what does the term 'terminal velocity' refer to?
- A. Maximum velocity reached by an object in free fall
- B. Velocity when the object is at rest
- C. Instantaneous velocity of an object
- D. Velocity only reached by heavy objects
Correct answer: A
Rationale: Terminal velocity in physics refers to the maximum velocity achieved by an object in free fall when the force of gravity equals the force of air resistance. At terminal velocity, the object stops accelerating and maintains a constant speed. This occurs when the opposing forces are balanced, leading to no further increase in speed. Choice B is incorrect as velocity when the object is at rest is zero, not at terminal velocity. Choice C is incorrect as instantaneous velocity refers to the velocity at a specific moment in time, not the maximum speed reached in free fall. Choice D is incorrect because terminal velocity is not exclusive to heavy objects; all objects in free fall can reach terminal velocity under the right conditions.
5. What happens to the speed of a sound wave when it travels from air to water?
- A. It increases because water is denser.
- B. It decreases because water is denser.
- C. It remains the same.
- D. Speed depends on the frequency, not the medium.
Correct answer: B
Rationale: When a sound wave travels from air to water, the speed of sound decreases because sound travels faster in denser mediums. Water, being denser than air, causes the speed of sound to slow down. Choice A is incorrect because sound travels faster in denser mediums, so the speed would not increase. Choice C is incorrect because the speed of sound changes when transitioning between different mediums. Choice D is incorrect because while frequency does affect sound, the medium it travels through also plays a significant role in determining the speed of sound.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access