ATI TEAS 7
TEAS 7 science practice
1. What is the primary difference between ionic and metallic bonding?
- A. Ionic bonds involve electron transfer, while metallic bonds involve electron sharing.
- B. Ionic bonds are weak and directional, while metallic bonds are strong and non-directional.
- C. Ionic bonds exist between metals and non-metals, while metallic bonds exist only between metals.
- D. Ionic bonds form discrete molecules, while metallic bonds form extended structures.
Correct answer: B
Rationale: Ionic bonds involve electron transfer, where one atom completely donates an electron to another, resulting in discrete molecules. On the other hand, metallic bonds are non-directional and strong, formed by a 'sea' of delocalized electrons shared among all metal atoms. This shared electron cloud allows for strong bonding throughout the entire material, making metallic bonds non-directional and strong compared to the directional and weaker nature of ionic bonds. Choice A is incorrect because metallic bonds do not involve electron sharing but rather the sharing of a sea of delocalized electrons. Choice C is incorrect as metallic bonds can also exist between metal atoms, not just between metals and non-metals. Choice D is incorrect because metallic bonds do not form discrete molecules but rather extended structures due to the sharing of electrons among all metal atoms.
2. Which type of white blood cell directly attacks and destroys pathogens like bacteria and viruses?
- A. Neutrophils
- B. Lymphocytes
- C. Monocytes
- D. Eosinophils
Correct answer: A
Rationale: Neutrophils are a type of white blood cell that plays a crucial role in the immune system's response to infections. They are phagocytes, meaning they engulf and destroy pathogens like bacteria and viruses. Neutrophils are the most abundant type of white blood cell and are known for their rapid response to infections, making them the primary cell type that directly attacks and destroys pathogens. Lymphocytes, although important in adaptive immunity, are not primarily responsible for directly attacking and destroying pathogens. Monocytes are involved in phagocytosis and immune response regulation but are not the primary cell type for direct pathogen destruction like neutrophils. Eosinophils are mainly involved in combating multicellular parasites and are not the primary cell type for targeting bacteria and viruses.
3. Connective tissue provides support and connects other tissues. What is the main component that gives connective tissue its strength?
- A. Collagen fibers
- B. Epithelial cells
- C. Nerve cells
- D. Blood cells
Correct answer: A
Rationale: Collagen fibers are the main component that gives connective tissue its strength. Collagen is a fibrous protein that provides structural support and tensile strength to connective tissues, allowing them to withstand stretching and tension. Epithelial cells, nerve cells, and blood cells are not the main components responsible for the strength of connective tissue. Epithelial cells are specialized for covering and lining surfaces, nerve cells transmit signals, and blood cells are involved in various functions like oxygen transport and immune response, but they do not provide the structural strength typical of collagen fibers in connective tissue.
4. What is the final stage of both mitosis and meiosis?
- A. Interphase
- B. Telophase
- C. Cytokinesis
- D. G1 phase
Correct answer: B
Rationale: - Interphase (option A) is not the final stage of mitosis or meiosis; it is the phase before cell division where the cell prepares for division by growing and replicating its DNA. - Telophase (option B) is the final stage of both mitosis and meiosis. During telophase, the separated chromosomes reach opposite poles of the cell, the nuclear membrane reforms around each set of chromosomes, and the chromosomes begin to decondense. - Cytokinesis (option C) is the process of dividing the cytoplasm to form two separate daughter cells. While it occurs after telophase, it is not considered the final stage of mitosis or meiosis. - G1 phase (option D) is the first gap phase in the cell cycle, occurring before DNA replication. It is not the final stage of mitosis or meiosis.
5. In nuclear fusion, where does the released energy originate from?
- A. The fission of heavy nuclei
- B. The binding energy released during the fusion of light nuclei
- C. Electronic transitions within atoms
- D. Matter-antimatter annihilation
Correct answer: B
Rationale: The correct answer is B: 'The binding energy released during the fusion of light nuclei.' Nuclear fusion involves the combination of light nuclei to form a heavier nucleus, releasing energy in the process. This energy arises from the binding energy that keeps the nucleus intact. As lighter nuclei fuse, they create a more stable nucleus, and the excess energy is emitted as radiation. This fundamental process is the primary source of energy in stars and holds promise as a potential future energy source on Earth. Choices A, C, and D are incorrect. Choice A, 'The fission of heavy nuclei,' is related to nuclear fission, not fusion. Choice C, 'Electronic transitions within atoms,' refers to energy release in atomic transitions, not nuclear fusion. Choice D, 'Matter-antimatter annihilation,' is a process where matter and antimatter collide, converting their mass into energy, but it is not the energy source for nuclear fusion.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access