ATI TEAS 7
TEAS 7 science practice
1. What is the difference between alpha decay and beta decay?
- A. Both release the same type of particle.
- B. Alpha decay releases a helium nucleus, while beta decay releases an electron or positron.
- C. Alpha decay is more common than beta decay.
- D. They both convert one element into another, but in different ways.
Correct answer: B
Rationale: The correct answer is B. Alpha decay involves the release of a helium nucleus, which consists of two protons and two neutrons. In contrast, beta decay releases an electron (beta-minus decay) or a positron (beta-plus decay). This significant distinction in the particles emitted during the decay processes distinguishes alpha decay from beta decay. Choice A is incorrect because alpha and beta decay release different types of particles. Choice C is incorrect as beta decay is more common than alpha decay in many cases. Choice D is incorrect as it does not specifically address the particles released during alpha and beta decay.
2. How many amino acids can make up a protein?
- A. 10-20
- B. 50-100
- C. 100-500
- D. 1000+
Correct answer: A
Rationale: Proteins are made up of long chains of amino acids, and there are 20 standard amino acids commonly found in proteins. The sequence and arrangement of these amino acids determine the structure and function of a protein. While proteins can vary in size and complexity, the number of amino acids typically ranges from around 10 to 20 in smaller proteins to hundreds or even thousands in larger proteins. Therefore, the range of 10-20 amino acids is the most accurate representation of the number of amino acids that can make up a protein. Choices B, C, and D are incorrect as they provide ranges that are beyond the typical number of amino acids found in proteins and may lead to confusion. The correct answer is A (10-20).
3. What is the momentum of a car with a mass of 1500 kg moving at a speed of 20 m/s?
- A. 30,000 kg m/s
- B. 1500 kg m/s
- C. 20 kg m/s
- D. Momentum cannot be determined without knowing the direction of motion.
Correct answer: A
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the momentum of the car can be determined using the formula momentum = mass x velocity. Substituting the given values, momentum = 1500 kg x 20 m/s = 30,000 kg m/s. Therefore, the correct answer is A, 30,000 kg m/s. Choice B (1500 kg m/s) is incorrect because that value represents the mass of the car, not its momentum. Choice C (20 kg m/s) is incorrect as it only represents the speed of the car, not its momentum. Choice D (Momentum cannot be determined without knowing the direction of motion) is incorrect because momentum is a vector quantity and can be determined using magnitude and direction, but in this case, only the magnitude is required.
4. What type of bond is present in salt?
- A. Ionic
- B. Nonpolar covalent
- C. Polar covalent
- D. Peptide
Correct answer: A
Rationale: The correct answer is 'Ionic.' Ionic bonds are formed in salts through the transfer of electrons between atoms, leading to the attraction between positively and negatively charged ions. This results in a stable ionic compound, such as common table salt (sodium chloride). Nonpolar covalent, polar covalent, and peptide bonds are not typically found in salts. Nonpolar covalent bonds involve the equal sharing of electrons, polar covalent bonds involve unequal sharing of electrons, and peptide bonds are specific to proteins, not salts.
5. Which force opposes the relative motion between surfaces in contact?
- A. Tension force
- B. Frictional force
- C. Gravitational force
- D. Magnetic force
Correct answer: B
Rationale: The correct answer is B: Frictional force. Frictional force opposes the relative motion between surfaces in contact. When two surfaces are in contact and one tries to slide over the other, the frictional force resists this motion, making it harder for the surfaces to move relative to each other. Choice A, tension force, is incorrect because tension force is a force transmitted through a string, rope, cable, or wire when it is pulled tight by forces acting from opposite ends. Choice C, gravitational force, is incorrect as it is the force of attraction between two masses. Choice D, magnetic force, is incorrect as it is the force exerted between magnetic objects.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access