ATI TEAS 7
TEAS 7 science study guide free
1. What is the difference between a germline mutation and a somatic mutation?
- A. Germline mutations are passed to offspring, while somatic mutations are not.
- B. Germline mutations occur in reproductive cells, while somatic mutations occur in body cells.
- C. Germline mutations only affect genes, while somatic mutations can affect any DNA.
- D. Germline mutations are always beneficial, while somatic mutations are always harmful.
Correct answer: B
Rationale: Rationale: - Germline mutations are changes in the DNA of reproductive cells (sperm or egg cells) and can be passed on to offspring, affecting all cells in the resulting organism. - Somatic mutations are changes in the DNA of non-reproductive cells (body cells) and are not passed on to offspring. These mutations only affect the cells that arise from the mutated cell. - Option A is incorrect because somatic mutations are not passed to offspring. - Option C is incorrect because both germline and somatic mutations can affect any DNA. - Option D is incorrect because the effects of mutations, whether germline or somatic, can be beneficial, harmful, or have no significant impact.
2. Which bone is the longest in the human body?
- A. Femur (Thigh bone)
- B. Humerus (Upper arm bone)
- C. Tibia (Shin bone)
- D. Scapula (Shoulder blade)
Correct answer: A
Rationale: The correct answer is the femur (thigh bone) as it is the longest bone in the human body, extending from the hip to the knee. It plays a vital role in supporting the body's weight and enabling movement. The humerus is located in the upper arm and is not as long as the femur. The tibia is the shin bone and is shorter than the femur. The scapula is the shoulder blade and is not the longest bone in the body, making it an incorrect choice.
3. What are some potential applications of understanding atomic structure in modern technology?
- A. Designing new materials with tailored properties.
- B. Developing advanced electronics and nanotechnology.
- C. Improving nuclear energy production and safety.
- D. All of the above.
Correct answer: D
Rationale: Understanding atomic structure is essential for various technological advancements. Designing new materials with tailored properties necessitates knowledge of atomic structure to effectively manipulate their characteristics. Developing advanced electronics and nanotechnology involves working at the atomic level to create smaller, faster, and more efficient devices. Improving nuclear energy production and safety also heavily depends on understanding atomic structure to enhance reactor design and safety measures. Therefore, all the options provided (A, B, and C) are potential applications of understanding atomic structure in modern technology.
4. Which of the following is an example of a decomposition reaction?
- A. 2H2 + O2 → 2H2O
- B. CaCO3 → CaO + CO2
- C. 2Na + Cl2 → 2NaCl
- D. N2 + 3H2 → 2NH3
Correct answer: B
Rationale: A decomposition reaction involves a single compound breaking down into two or more simpler substances. In option B, CaCO3 breaks down into CaO and CO2, making it an example of a decomposition reaction. Options A, C, and D involve different types of chemical reactions such as synthesis, combination, and combustion, respectively. Option A represents a synthesis reaction, where two elements combine to form a compound. Option C demonstrates a combination reaction, where two elements combine to form a compound. Option D is an example of a synthesis reaction, where two reactants combine to form a single compound. It is important to recognize the specific characteristics of each type of chemical reaction to identify the correct example of decomposition reaction, where a compound breaks down into simpler products.
5. Which of the following macromolecules will always contain nitrogen?
- A. Fatty acids
- B. Proteins
- C. Lipids
- D. Carbohydrates
Correct answer: B
Rationale: The correct answer is B: Proteins. Proteins are the only macromolecules that always contain nitrogen in their amino acid structure. Nitrogen is a key element found in the amino groups of amino acids, which are the building blocks of proteins. Fatty acids (Choice A), lipids (Choice C), and carbohydrates (Choice D) do not always contain nitrogen in their structure. Fatty acids are composed of long hydrocarbon chains and do not contain nitrogen. Lipids consist mainly of carbon, hydrogen, and oxygen, with some classes of lipids containing phosphorus but not nitrogen. Carbohydrates are made up of carbon, hydrogen, and oxygen, forming structures like sugars and starches, but they do not contain nitrogen.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access